move apps to subdirectory, add relative path support to Makefile
This commit is contained in:
392
apps/Sensor Watch BME280 Project/app.c
Normal file
392
apps/Sensor Watch BME280 Project/app.c
Normal file
@@ -0,0 +1,392 @@
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <math.h>
|
||||
#include "watch.h"
|
||||
#include "bme280.h"
|
||||
|
||||
#include "app.h"
|
||||
|
||||
ApplicationState application_state;
|
||||
char buf[16] = {0};
|
||||
|
||||
/**
|
||||
* @brief Zeroes out the application state struct.
|
||||
*/
|
||||
void app_init() {
|
||||
memset(&application_state, 0, sizeof(application_state));
|
||||
}
|
||||
|
||||
void app_wake_from_deep_sleep() {
|
||||
// This app does not support deep sleep mode.
|
||||
}
|
||||
|
||||
void app_setup() {
|
||||
struct calendar_date_time date_time;
|
||||
watch_get_date_time(&date_time);
|
||||
if (date_time.date.year < 2020) {
|
||||
date_time.date.year = 2020;
|
||||
watch_set_date_time(date_time);
|
||||
}
|
||||
|
||||
watch_enable_external_interrupts();
|
||||
watch_register_interrupt_callback(BTN_MODE, cb_mode_pressed, INTERRUPT_TRIGGER_RISING);
|
||||
watch_register_interrupt_callback(BTN_LIGHT, cb_light_pressed, INTERRUPT_TRIGGER_RISING);
|
||||
watch_register_extwake_callback(BTN_ALARM, cb_alarm_pressed, true);
|
||||
|
||||
watch_enable_buzzer();
|
||||
watch_enable_leds();
|
||||
|
||||
// pin A0 powers the sensor on this board.
|
||||
watch_enable_digital_output(A0);
|
||||
watch_set_pin_level(A0, true);
|
||||
delay_ms(10);
|
||||
|
||||
watch_enable_i2c();
|
||||
|
||||
watch_i2c_write8(BME280_ADDRESS, BME280_REGISTER_SOFTRESET, BME280_SOFT_RESET_CODE);
|
||||
delay_ms(10);
|
||||
application_state.dig_T1 = watch_i2c_read16(BME280_ADDRESS, BME280_REGISTER_DIG_T1);
|
||||
application_state.dig_T2 = (int16_t)watch_i2c_read16(BME280_ADDRESS, BME280_REGISTER_DIG_T2);
|
||||
application_state.dig_T3 = (int16_t)watch_i2c_read16(BME280_ADDRESS, BME280_REGISTER_DIG_T3);
|
||||
application_state.dig_H1 = watch_i2c_read8(BME280_ADDRESS, BME280_REGISTER_DIG_H1);
|
||||
application_state.dig_H2 = (int16_t)watch_i2c_read16(BME280_ADDRESS, BME280_REGISTER_DIG_H2);
|
||||
application_state.dig_H3 = watch_i2c_read8(BME280_ADDRESS, BME280_REGISTER_DIG_H3);
|
||||
application_state.dig_H4 = ((int8_t)watch_i2c_read8(BME280_ADDRESS, BME280_REGISTER_DIG_H4) << 4) |
|
||||
(watch_i2c_read8(BME280_ADDRESS, BME280_REGISTER_DIG_H4 + 1) & 0xF);
|
||||
application_state.dig_H5 = ((int8_t)watch_i2c_read8(BME280_ADDRESS, BME280_REGISTER_DIG_H5 + 1) << 4) |
|
||||
(watch_i2c_read8(BME280_ADDRESS, BME280_REGISTER_DIG_H5) >> 4);
|
||||
application_state.dig_H6 = (int8_t)watch_i2c_read8(BME280_ADDRESS, BME280_REGISTER_DIG_H6);
|
||||
|
||||
watch_i2c_write8(BME280_ADDRESS, BME280_REGISTER_CONTROL_HUMID, BME280_CONTROL_HUMID_SAMPLING_NONE);
|
||||
watch_i2c_write8(BME280_ADDRESS, BME280_REGISTER_CONTROL, BME280_CONTROL_TEMPERATURE_SAMPLING_X16 |
|
||||
BME280_CONTROL_PRESSURE_SAMPLING_NONE |
|
||||
BME280_CONTROL_MODE_FORCED);
|
||||
|
||||
watch_enable_display();
|
||||
|
||||
watch_register_tick_callback(cb_tick);
|
||||
}
|
||||
|
||||
/**
|
||||
* Nothing to do here.
|
||||
*/
|
||||
void app_prepare_for_sleep() {
|
||||
}
|
||||
|
||||
/**
|
||||
* @todo restore the BME280's calibration values from backup memory
|
||||
*/
|
||||
void app_wake_from_sleep() {
|
||||
}
|
||||
|
||||
/**
|
||||
* Displays the temperature and humidity on screen, or a string indicating no measurements are being taken.
|
||||
*/
|
||||
bool app_loop() {
|
||||
// play a beep if the mode has changed in response to a user's press of the MODE button
|
||||
if (application_state.mode_changed) {
|
||||
// low note for nonzero case, high note for return to clock
|
||||
watch_buzzer_play_note(application_state.mode ? BUZZER_NOTE_C7 : BUZZER_NOTE_C8, 100);
|
||||
application_state.mode_changed = false;
|
||||
}
|
||||
|
||||
// If the user is not in clock mode and the mode timeout has expired, return them to clock mode
|
||||
if (application_state.mode != MODE_CLOCK && application_state.mode_ticks == 0) {
|
||||
application_state.mode = MODE_CLOCK;
|
||||
application_state.mode_changed = true;
|
||||
}
|
||||
|
||||
// If the LED is off and should be on, turn it on
|
||||
if (application_state.light_ticks > 0 && !application_state.led_on) {
|
||||
watch_set_led_green();
|
||||
application_state.led_on = true;
|
||||
}
|
||||
|
||||
// if the LED is on and should be off, turn it off
|
||||
if (application_state.led_on && application_state.light_ticks == 0) {
|
||||
// unless the user is holding down the LIGHT button, in which case, give them more time.
|
||||
if (watch_get_pin_level(BTN_LIGHT)) {
|
||||
application_state.light_ticks = 3;
|
||||
} else {
|
||||
watch_set_led_off();
|
||||
application_state.led_on = false;
|
||||
}
|
||||
}
|
||||
|
||||
switch (application_state.mode) {
|
||||
case MODE_CLOCK:
|
||||
do_clock_mode();
|
||||
break;
|
||||
case MODE_TEMP:
|
||||
do_temp_mode();
|
||||
break;
|
||||
case MODE_LOG:
|
||||
do_log_mode();
|
||||
break;
|
||||
case MODE_PREFS:
|
||||
do_prefs_mode();
|
||||
break;
|
||||
case MODE_SET:
|
||||
do_set_time_mode();
|
||||
break;
|
||||
case NUM_MODES:
|
||||
// dummy case, just silences a warning
|
||||
break;
|
||||
}
|
||||
|
||||
application_state.mode_changed = false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* Reads the temperature from the BME280
|
||||
* @param p_t_fine - an optional pointer to an int32_t; if provided, the t_fine measurement
|
||||
* (required for humidity calculation) will be returned by reference.
|
||||
* Pass in NULL if you do not care about this value.
|
||||
* @return a float indicating the temperature in degrees celsius.
|
||||
*/
|
||||
float read_temperature(int32_t *p_t_fine) {
|
||||
// read24 reads the bytes into a uint32 which works for little-endian values (MSB is 0)
|
||||
uint32_t raw_data = watch_i2c_read24(BME280_ADDRESS, BME280_REGISTER_TEMP_DATA) >> 8;
|
||||
// alas the sensor's register layout is big-endian-ish, with a nibble of zeroes at the end of the LSB.
|
||||
// this line shuffles everything back into place (swaps LSB and MSB and shifts the zeroes off the end)
|
||||
int32_t adc_value = (((raw_data >> 16) | (raw_data & 0xFF00) | (raw_data << 16)) & 0xFFFFFF) >> 4;
|
||||
|
||||
// this bit is cribbed from Adafruit's BME280 driver. support their open source efforts by buying some stuff!
|
||||
int32_t var1 = ((((adc_value >> 3) - ((int32_t)application_state.dig_T1 << 1))) * ((int32_t)application_state.dig_T2)) >> 11;
|
||||
int32_t var2 = (((((adc_value >> 4) - ((int32_t)application_state.dig_T1)) * ((adc_value >> 4) - ((int32_t)application_state.dig_T1))) >> 12) * ((int32_t)application_state.dig_T3)) >> 14;
|
||||
int32_t t_fine = var1 + var2;
|
||||
|
||||
// if we got a pointer to a t_fine, return it by reference (for humidity calculation).
|
||||
if (p_t_fine != NULL) *p_t_fine = t_fine;
|
||||
|
||||
if (application_state.is_fahrenheit) {
|
||||
return (((t_fine * 5 + 128) >> 8) / 100.0) * 1.8 + 32;
|
||||
} else {
|
||||
return ((t_fine * 5 + 128) >> 8) / 100.0;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Reads the humidity from the BME280
|
||||
* @param t_fine - the t_fine measurement from a call to read_temperature
|
||||
* @return a float indicating the relative humidity as a percentage from 0-100.
|
||||
* @todo the returned value is glitchy, need to fix.
|
||||
*/
|
||||
float read_humidity(int32_t t_fine) {
|
||||
int32_t adc_value = watch_i2c_read16(BME280_ADDRESS, BME280_REGISTER_HUMID_DATA);
|
||||
|
||||
// again, cribbed from Adafruit's BME280 driver. they sell a great breakout board for this sensor!
|
||||
int32_t v_x1_u32r = (t_fine - ((int32_t)76800));
|
||||
v_x1_u32r = (((((adc_value << 14) - (((int32_t)application_state.dig_H4) << 20) - (((int32_t)application_state.dig_H5) * v_x1_u32r)) +
|
||||
((int32_t)16384)) >> 15) * (((((((v_x1_u32r * ((int32_t)application_state.dig_H6)) >> 10) * (((v_x1_u32r * ((int32_t)application_state.dig_H3)) >> 11) +
|
||||
((int32_t)32768))) >> 10) + ((int32_t)2097152)) * ((int32_t)application_state.dig_H2) + 8192) >> 14));
|
||||
v_x1_u32r = (v_x1_u32r - (((((v_x1_u32r >> 15) * (v_x1_u32r >> 15)) >> 7) * ((int32_t)application_state.dig_H1)) >> 4));
|
||||
v_x1_u32r = (v_x1_u32r < 0) ? 0 : v_x1_u32r;
|
||||
v_x1_u32r = (v_x1_u32r > 419430400) ? 419430400 : v_x1_u32r;
|
||||
float h = (v_x1_u32r >> 12);
|
||||
|
||||
return h / 1024.0;
|
||||
}
|
||||
|
||||
void log_data() {
|
||||
struct calendar_date_time date_time;
|
||||
watch_get_date_time(&date_time);
|
||||
uint8_t hour = date_time.time.hour;
|
||||
int8_t temperature = read_temperature(NULL);
|
||||
|
||||
for(int i = 0; i < MAX_DATA_POINTS - 1; i++) {
|
||||
application_state.logged_data[i] = application_state.logged_data[i + 1];
|
||||
}
|
||||
application_state.logged_data[MAX_DATA_POINTS - 1].is_valid = true;
|
||||
application_state.logged_data[MAX_DATA_POINTS - 1].hour = hour;
|
||||
application_state.logged_data[MAX_DATA_POINTS - 1].temperature = temperature;
|
||||
}
|
||||
|
||||
void do_clock_mode() {
|
||||
struct calendar_date_time date_time;
|
||||
const char months[12][3] = {"JA", "FE", "MR", "AR", "MA", "JN", "JL", "AU", "SE", "OC", "NO", "dE"};
|
||||
|
||||
watch_get_date_time(&date_time);
|
||||
watch_display_string((char *)months[date_time.date.month - 1], 0);
|
||||
sprintf(buf, "%2d%2d%02d%02d", date_time.date.day, date_time.time.hour, date_time.time.min, date_time.time.sec);
|
||||
watch_display_string(buf, 2);
|
||||
watch_set_colon();
|
||||
}
|
||||
|
||||
void do_temp_mode() {
|
||||
int32_t t_fine;
|
||||
float temperature;
|
||||
float humidity;
|
||||
|
||||
// take one reading
|
||||
watch_i2c_write8(BME280_ADDRESS, BME280_REGISTER_CONTROL, BME280_CONTROL_TEMPERATURE_SAMPLING_X16 |
|
||||
BME280_CONTROL_MODE_FORCED);
|
||||
// wait for reading to finish
|
||||
while(watch_i2c_read8(BME280_ADDRESS, BME280_REGISTER_STATUS) & BME280_STATUS_UPDATING_MASK);
|
||||
temperature = read_temperature(&t_fine);
|
||||
humidity = read_humidity(t_fine);
|
||||
if (application_state.show_humidity) {
|
||||
sprintf(buf, "TE%2d%4.1f#%c", (int)(humidity / 10), temperature, application_state.is_fahrenheit ? 'F' : 'C');
|
||||
} else {
|
||||
sprintf(buf, "TE %4.1f#%c", temperature, application_state.is_fahrenheit ? 'F' : 'C');
|
||||
}
|
||||
watch_display_string(buf, 0);
|
||||
watch_clear_colon();
|
||||
}
|
||||
|
||||
void do_log_mode() {
|
||||
bool is_valid = (uint8_t)(application_state.logged_data[MAX_DATA_POINTS - 1 - application_state.page].is_valid);
|
||||
uint8_t hour = (uint8_t)(application_state.logged_data[MAX_DATA_POINTS - 1 - application_state.page].hour);
|
||||
int8_t temperature = (int8_t)(application_state.logged_data[MAX_DATA_POINTS - 1 - application_state.page].temperature);
|
||||
if (!is_valid) {
|
||||
sprintf(buf, "LO%2d------", application_state.page);
|
||||
watch_clear_colon();
|
||||
} else {
|
||||
sprintf(buf, "LO%2d%2d%4d", application_state.page, hour, temperature);
|
||||
watch_set_colon();
|
||||
}
|
||||
watch_display_string(buf, 0);
|
||||
}
|
||||
|
||||
void log_mode_handle_primary_button() {
|
||||
application_state.page++;
|
||||
if (application_state.page == MAX_DATA_POINTS) application_state.page = 0;
|
||||
}
|
||||
|
||||
void do_prefs_mode() {
|
||||
sprintf(buf, "PR CorF %c", application_state.is_fahrenheit ? 'F' : 'C');
|
||||
watch_display_string(buf, 0);
|
||||
watch_clear_colon();
|
||||
}
|
||||
|
||||
void prefs_mode_handle_primary_button() {
|
||||
// TODO: add rest of preferences (12/24, humidity, LED color, etc.)
|
||||
// for now only one, C or F
|
||||
}
|
||||
|
||||
void prefs_mode_handle_secondary_button() {
|
||||
application_state.is_fahrenheit = !application_state.is_fahrenheit;
|
||||
}
|
||||
|
||||
void do_set_time_mode() {
|
||||
struct calendar_date_time date_time;
|
||||
|
||||
watch_get_date_time(&date_time);
|
||||
watch_display_string(" ", 0);
|
||||
switch (application_state.page) {
|
||||
case 0: // hour
|
||||
sprintf(buf, "ST t%2d", date_time.time.hour);
|
||||
break;
|
||||
case 1: // minute
|
||||
sprintf(buf, "ST t %02d", date_time.time.min);
|
||||
break;
|
||||
case 2: // second
|
||||
sprintf(buf, "ST t %02d", date_time.time.sec);
|
||||
break;
|
||||
case 3: // year
|
||||
sprintf(buf, "ST d%2d", date_time.date.year - 2000);
|
||||
break;
|
||||
case 4: // month
|
||||
sprintf(buf, "ST d %02d", date_time.date.month);
|
||||
break;
|
||||
case 5: // day
|
||||
sprintf(buf, "ST d %02d", date_time.date.day);
|
||||
break;
|
||||
}
|
||||
watch_display_string(buf, 0);
|
||||
watch_set_pixel(1, 12); // required for T in position 1
|
||||
}
|
||||
|
||||
void set_time_mode_handle_primary_button() {
|
||||
application_state.page++;
|
||||
if (application_state.page == 6) application_state.page = 0;
|
||||
}
|
||||
|
||||
void set_time_mode_handle_secondary_button() {
|
||||
struct calendar_date_time date_time;
|
||||
watch_get_date_time(&date_time);
|
||||
const uint8_t days_in_month[12] = {31, 28, 31, 30, 31, 30, 30, 31, 30, 31, 30, 31};
|
||||
|
||||
switch (application_state.page) {
|
||||
case 0: // hour
|
||||
date_time.time.hour = (date_time.time.hour + 1) % 24;
|
||||
break;
|
||||
case 1: // minute
|
||||
date_time.time.min = (date_time.time.min + 1) % 60;
|
||||
break;
|
||||
case 2: // second
|
||||
date_time.time.sec = 0;
|
||||
break;
|
||||
case 3: // year
|
||||
// only allow 2021-2030. fix this sometime next decade
|
||||
date_time.date.year = ((date_time.date.year % 10) + 1) + 2020;
|
||||
break;
|
||||
case 4: // month
|
||||
date_time.date.month = ((date_time.date.month + 1) % 12);
|
||||
break;
|
||||
case 5: // day
|
||||
date_time.date.day = date_time.date.day + 1;
|
||||
// can't set to the 29th on a leap year. if it's february 29, set to 11:59 on the 28th.
|
||||
// and it should roll over.
|
||||
if (date_time.date.day > days_in_month[date_time.date.month - 1]) {
|
||||
date_time.date.day = 1;
|
||||
}
|
||||
break;
|
||||
}
|
||||
watch_set_date_time(date_time);
|
||||
}
|
||||
|
||||
void cb_mode_pressed() {
|
||||
application_state.mode = (application_state.mode + 1) % NUM_MODES;
|
||||
application_state.mode_changed = true;
|
||||
application_state.mode_ticks = 300;
|
||||
application_state.page = 0;
|
||||
}
|
||||
|
||||
void cb_light_pressed() {
|
||||
switch (application_state.mode) {
|
||||
case MODE_PREFS:
|
||||
prefs_mode_handle_secondary_button();
|
||||
break;
|
||||
case MODE_SET:
|
||||
set_time_mode_handle_secondary_button();
|
||||
break;
|
||||
default:
|
||||
application_state.light_ticks = 3;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void cb_alarm_pressed() {
|
||||
switch (application_state.mode) {
|
||||
case MODE_LOG:
|
||||
log_mode_handle_primary_button();
|
||||
break;
|
||||
case MODE_PREFS:
|
||||
prefs_mode_handle_primary_button();
|
||||
break;
|
||||
case MODE_SET:
|
||||
set_time_mode_handle_primary_button();
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void cb_tick() {
|
||||
// TODO: use alarm interrupt to trigger data acquisition.
|
||||
struct calendar_date_time date_time;
|
||||
watch_get_date_time(&date_time);
|
||||
if (date_time.time.min == 0 && date_time.time.sec == 0) {
|
||||
log_data();
|
||||
}
|
||||
|
||||
if (application_state.light_ticks > 0) {
|
||||
application_state.light_ticks--;
|
||||
}
|
||||
if (application_state.mode_ticks > 0) {
|
||||
application_state.mode_ticks--;
|
||||
}
|
||||
}
|
||||
76
apps/Sensor Watch BME280 Project/app.h
Normal file
76
apps/Sensor Watch BME280 Project/app.h
Normal file
@@ -0,0 +1,76 @@
|
||||
// Sensor Watch: Hiking Log Demo App
|
||||
// This app displays a clock and temperature data from a BME280 temperature and humidiity sensor.
|
||||
// It also logs up to 36 hours of temperature data for playback.
|
||||
// You can use this app on backcountry treks: take the watch off at night and place it outside your tent.
|
||||
// It will log overnight low temperatures for review in the morning and optional transfer to your notepad.
|
||||
|
||||
#define MAX_DATA_POINTS 36
|
||||
|
||||
typedef enum ApplicationMode {
|
||||
MODE_CLOCK = 0, // Displays month, day and current time.
|
||||
MODE_TEMP, // (TE) Displays temperature and an optional humidity reading (0-10 representing 0-100%)
|
||||
MODE_LOG, // (LO) Plays back temperature data (temperature in seconds slot)
|
||||
MODE_PREFS, // (PR) Allows setting options for the application
|
||||
MODE_SET, // (ST) Set time and date
|
||||
NUM_MODES // Last item in the enum, it's the number of cases.
|
||||
} ApplicationMode;
|
||||
|
||||
typedef struct SensorReading {
|
||||
bool is_valid;
|
||||
uint8_t hour;
|
||||
int8_t temperature;
|
||||
} SensorReading;
|
||||
|
||||
typedef struct ApplicationState {
|
||||
// Internal application state
|
||||
ApplicationMode mode; // Current mode
|
||||
bool mode_changed; // Lets us perform one-time setup for a given mode
|
||||
uint16_t mode_ticks; // Timeout for the mode (returns to clock after timeout expires)
|
||||
uint8_t light_ticks; // Timeout for the light
|
||||
bool led_on; // Indicates that the LED is on
|
||||
uint8_t page; // Tracks the current page in log, prefs or settings.
|
||||
bool is_fahrenheit; // User preference, C or F
|
||||
|
||||
// Data logging
|
||||
SensorReading logged_data[MAX_DATA_POINTS];
|
||||
|
||||
// User preference
|
||||
bool show_humidity; // Indicates that the LED is on
|
||||
|
||||
// BME280 calibration values
|
||||
uint16_t dig_T1;
|
||||
int16_t dig_T2;
|
||||
int16_t dig_T3;
|
||||
uint8_t dig_H1;
|
||||
int16_t dig_H2;
|
||||
uint8_t dig_H3;
|
||||
int16_t dig_H4;
|
||||
int16_t dig_H5;
|
||||
int8_t dig_H6;
|
||||
} ApplicationState;
|
||||
|
||||
float read_temperature(int32_t *p_t_fine);
|
||||
float read_humidity(int32_t t_fine);
|
||||
|
||||
void log_data();
|
||||
|
||||
void do_clock_mode();
|
||||
|
||||
void do_temp_mode();
|
||||
void temp_mode_handle_primary_button();
|
||||
|
||||
void do_log_mode();
|
||||
void log_mode_handle_primary_button();
|
||||
|
||||
void do_prefs_mode();
|
||||
void prefs_mode_handle_primary_button();
|
||||
void prefs_mode_handle_secondary_button();
|
||||
|
||||
void do_set_time_mode();
|
||||
void set_time_mode_handle_primary_button();
|
||||
void set_time_mode_handle_secondary_button();
|
||||
|
||||
void cb_light_pressed();
|
||||
void cb_mode_pressed();
|
||||
void cb_alarm_pressed();
|
||||
void cb_tick();
|
||||
85
apps/Sensor Watch BME280 Project/bme280.h
Normal file
85
apps/Sensor Watch BME280 Project/bme280.h
Normal file
@@ -0,0 +1,85 @@
|
||||
#define BME280_ADDRESS (0x77)
|
||||
#define BME280_SOFT_RESET_CODE (0xB6)
|
||||
#define BME280_STATUS_UPDATING_MASK (1 << 3)
|
||||
|
||||
typedef enum BME280Register {
|
||||
BME280_REGISTER_DIG_T1 = 0x88,
|
||||
BME280_REGISTER_DIG_T2 = 0x8A,
|
||||
BME280_REGISTER_DIG_T3 = 0x8C,
|
||||
|
||||
BME280_REGISTER_DIG_P1 = 0x8E,
|
||||
BME280_REGISTER_DIG_P2 = 0x90,
|
||||
BME280_REGISTER_DIG_P3 = 0x92,
|
||||
BME280_REGISTER_DIG_P4 = 0x94,
|
||||
BME280_REGISTER_DIG_P5 = 0x96,
|
||||
BME280_REGISTER_DIG_P6 = 0x98,
|
||||
BME280_REGISTER_DIG_P7 = 0x9A,
|
||||
BME280_REGISTER_DIG_P8 = 0x9C,
|
||||
BME280_REGISTER_DIG_P9 = 0x9E,
|
||||
|
||||
BME280_REGISTER_DIG_H1 = 0xA1,
|
||||
BME280_REGISTER_DIG_H2 = 0xE1,
|
||||
BME280_REGISTER_DIG_H3 = 0xE3,
|
||||
BME280_REGISTER_DIG_H4 = 0xE4,
|
||||
BME280_REGISTER_DIG_H5 = 0xE5,
|
||||
BME280_REGISTER_DIG_H6 = 0xE7,
|
||||
|
||||
BME280_REGISTER_CHIPID = 0xD0,
|
||||
BME280_REGISTER_VERSION = 0xD1,
|
||||
BME280_REGISTER_SOFTRESET = 0xE0,
|
||||
|
||||
BME280_REGISTER_CAL26 = 0xE1,
|
||||
|
||||
BME280_REGISTER_CONTROL_HUMID = 0xF2,
|
||||
BME280_REGISTER_STATUS = 0XF3,
|
||||
BME280_REGISTER_CONTROL = 0xF4,
|
||||
BME280_REGISTER_CONFIG = 0xF5,
|
||||
BME280_REGISTER_PRESSURE_DATA = 0xF7,
|
||||
BME280_REGISTER_TEMP_DATA = 0xFA,
|
||||
BME280_REGISTER_HUMID_DATA = 0xFD
|
||||
} BME280Register;
|
||||
|
||||
typedef enum BME280Control {
|
||||
BME280_CONTROL_MODE_SLEEP = 0b00,
|
||||
BME280_CONTROL_MODE_FORCED = 0b01,
|
||||
BME280_CONTROL_MODE_NORMAL = 0b11,
|
||||
BME280_CONTROL_PRESSURE_SAMPLING_NONE = 0b000 << 2,
|
||||
BME280_CONTROL_PRESSURE_SAMPLING_X1 = 0b001 << 2,
|
||||
BME280_CONTROL_PRESSURE_SAMPLING_X2 = 0b010 << 2,
|
||||
BME280_CONTROL_PRESSURE_SAMPLING_X4 = 0b011 << 2,
|
||||
BME280_CONTROL_PRESSURE_SAMPLING_X8 = 0b100 << 2,
|
||||
BME280_CONTROL_PRESSURE_SAMPLING_X16 = 0b101 << 2,
|
||||
BME280_CONTROL_TEMPERATURE_SAMPLING_NONE = 0b000 << 5,
|
||||
BME280_CONTROL_TEMPERATURE_SAMPLING_X1 = 0b001 << 5,
|
||||
BME280_CONTROL_TEMPERATURE_SAMPLING_X2 = 0b010 << 5,
|
||||
BME280_CONTROL_TEMPERATURE_SAMPLING_X4 = 0b011 << 5,
|
||||
BME280_CONTROL_TEMPERATURE_SAMPLING_X8 = 0b100 << 5,
|
||||
BME280_CONTROL_TEMPERATURE_SAMPLING_X16 = 0b101 << 5
|
||||
} BME280Control;
|
||||
|
||||
typedef enum BME280ControlHumidity {
|
||||
BME280_CONTROL_HUMID_SAMPLING_NONE = 0b000,
|
||||
BME280_CONTROL_HUMID_SAMPLING_X1 = 0b001,
|
||||
BME280_CONTROL_HUMID_SAMPLING_X2 = 0b010,
|
||||
BME280_CONTROL_HUMID_SAMPLING_X4 = 0b011,
|
||||
BME280_CONTROL_HUMID_SAMPLING_X8 = 0b100,
|
||||
BME280_CONTROL_HUMID_SAMPLING_X16 = 0b101
|
||||
} BME280ControlHumidity;
|
||||
|
||||
typedef enum BME280Filter {
|
||||
BME280_CONFIG_FILTER_OFF = 0b000 << 2,
|
||||
BME280_CONFIG_FILTER_X2 = 0b001 << 2,
|
||||
BME280_CONFIG_FILTER_X4 = 0b010 << 2,
|
||||
BME280_CONFIG_FILTER_X8 = 0b011 << 2,
|
||||
BME280_CONFIG_FILTER_X16 = 0b10 << 2,
|
||||
BME280_CONFIG_STANDBY_MS_0_5 = 0b000 << 5,
|
||||
BME280_CONFIG_STANDBY_MS_10 = 0b110 << 5,
|
||||
BME280_CONFIG_STANDBY_MS_20 = 0b111 << 5,
|
||||
BME280_CONFIG_STANDBY_MS_62_5 = 0b001 << 5,
|
||||
BME280_CONFIG_STANDBY_MS_125 = 0b010 << 5,
|
||||
BME280_CONFIG_STANDBY_MS_250 = 0b011 << 5,
|
||||
BME280_CONFIG_STANDBY_MS_500 = 0b100 << 5,
|
||||
BME280_CONFIG_STANDBY_MS_1000 = 0b101 << 5
|
||||
} BME280Filter;
|
||||
|
||||
inline uint16_t make_le_16(uint16_t val) { return (val >> 8) | (val << 8); }
|
||||
1
apps/Sensor Watch BME280 Project/make/.gitignore
vendored
Executable file
1
apps/Sensor Watch BME280 Project/make/.gitignore
vendored
Executable file
@@ -0,0 +1 @@
|
||||
build/
|
||||
10
apps/Sensor Watch BME280 Project/make/Makefile
Executable file
10
apps/Sensor Watch BME280 Project/make/Makefile
Executable file
@@ -0,0 +1,10 @@
|
||||
TOP = ../../..
|
||||
include $(TOP)/make.mk
|
||||
|
||||
INCLUDES += \
|
||||
-I../
|
||||
|
||||
SRCS += \
|
||||
../app.c
|
||||
|
||||
include $(TOP)/rules.mk
|
||||
195
apps/Sensor Watch Starter Project/app.c
Normal file
195
apps/Sensor Watch Starter Project/app.c
Normal file
@@ -0,0 +1,195 @@
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include "watch.h"
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
// This section sets up types and storage for our application state.
|
||||
// You can tear this out and replace it with whatever you want.
|
||||
typedef enum ApplicationMode {
|
||||
MODE_HELLO = 0,
|
||||
MODE_THERE
|
||||
} ApplicationMode;
|
||||
|
||||
typedef enum LightColor {
|
||||
COLOR_RED = 0,
|
||||
COLOR_GREEN,
|
||||
COLOR_YELLOW
|
||||
} LightColor;
|
||||
|
||||
typedef struct ApplicationState {
|
||||
ApplicationMode mode;
|
||||
LightColor color;
|
||||
bool light_on;
|
||||
uint8_t wake_count;
|
||||
bool enter_deep_sleep;
|
||||
} ApplicationState;
|
||||
|
||||
ApplicationState application_state;
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
// This section defines the callbacks for our button press events (implemented at bottom).
|
||||
// Add any other callbacks you may need either here or in another file.
|
||||
void cb_light_pressed();
|
||||
void cb_mode_pressed();
|
||||
void cb_alarm_pressed();
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
// This section contains the required functions for any watch app. You should tear out
|
||||
// all the code in these functions when writing your app, but you must implement all
|
||||
// of the functions, even if they are empty stubs. You can also replace the documentation
|
||||
// lines with documentation that describes what your functions do!
|
||||
|
||||
/**
|
||||
* @brief the app_init function is called before anything else. Use it to set up any
|
||||
* internal data structures or application state required by your app.
|
||||
*/
|
||||
void app_init() {
|
||||
memset(&application_state, 0, sizeof(application_state));
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief the app_wake_from_deep_sleep function is only called if your app is waking from
|
||||
* the ultra-low power BACKUP sleep mode. You may have chosen to store some state in the
|
||||
* RTC's backup registers prior to entering this mode. You may restore that state here.
|
||||
*
|
||||
* @see watch_enter_deep_sleep()
|
||||
*/
|
||||
void app_wake_from_deep_sleep() {
|
||||
// retrieve our application state from the backup registers
|
||||
application_state.mode = (ApplicationMode)watch_get_backup_data(0);
|
||||
application_state.color = (LightColor)watch_get_backup_data(1);
|
||||
application_state.wake_count = (uint8_t)watch_get_backup_data(2) + 1;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief the app_setup function is like setup() in Arduino. It is called once when the
|
||||
* program begins. You should set pin modes and enable any peripherals you want to
|
||||
* set up (real-time clock, I2C, etc.) Depending on your application, you may or may not
|
||||
* want to configure sensors on your sensor board here. For example, a low-power
|
||||
* accelerometer that will run at all times should be configured here, whereas you may
|
||||
* want to enable a more power-hungry environmental sensor only when you need it.
|
||||
*
|
||||
* @note If your app enters the ultra-low power BACKUP sleep mode, this function will
|
||||
* be called again when it wakes from that deep sleep state. In this state, the RTC will
|
||||
* still be configured with the correct date and time.
|
||||
*/
|
||||
void app_setup() {
|
||||
watch_enable_leds();
|
||||
|
||||
watch_enable_external_interrupts();
|
||||
// This starter app demonstrates three different ways of using the button interrupts.
|
||||
// The BTN_MODE interrupt only triggers on a rising edge, so the mode changes once per press.
|
||||
watch_register_interrupt_callback(BTN_MODE, cb_mode_pressed, INTERRUPT_TRIGGER_RISING);
|
||||
// The BTN_LIGHT interrupt triggers on both rising and falling edges. The callback then checks
|
||||
// the pin state when triggered: on a button down event, it increments the color and turns the
|
||||
// LED on, whereas on a button up event, it turns the light off.
|
||||
watch_register_interrupt_callback(BTN_LIGHT, cb_light_pressed, INTERRUPT_TRIGGER_BOTH);
|
||||
// The BTN_ALARM callback is on an external wake pin; we can avoid using the EIC for this pin
|
||||
// by using the extwake interrupt — but note that it can only trigger on either a rising or
|
||||
// a falling edge, not both.
|
||||
watch_register_extwake_callback(BTN_ALARM, cb_alarm_pressed, true);
|
||||
|
||||
watch_enable_display();
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief the app_prepare_for_sleep function is called before the watch goes into the
|
||||
* STANDBY sleep mode. In STANDBY mode, most peripherals are shut down, and no code
|
||||
* will run until the watch receives an interrupt (generally either the 1Hz tick or
|
||||
* a press on one of the buttons).
|
||||
*/
|
||||
void app_prepare_for_sleep() {
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief the app_wake_from_sleep function is called after the watch wakes from the
|
||||
* STANDBY sleep mode.
|
||||
*/
|
||||
void app_wake_from_sleep() {
|
||||
application_state.wake_count++;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief the app_loop function is called once on app startup and then again each time
|
||||
* the watch STANDBY sleep mode.
|
||||
*/
|
||||
bool app_loop() {
|
||||
// set the LED to a color
|
||||
if (application_state.light_on) {
|
||||
switch (application_state.color) {
|
||||
case COLOR_RED:
|
||||
watch_set_led_red();
|
||||
break;
|
||||
case COLOR_GREEN:
|
||||
watch_set_led_green();
|
||||
break;
|
||||
case COLOR_YELLOW:
|
||||
watch_set_led_yellow();
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
watch_set_led_off();
|
||||
}
|
||||
|
||||
// Display the number of times we've woken up (modulo 32 to fit in 2 digits at top right)
|
||||
char buf[3] = {0};
|
||||
sprintf(buf, "%2d", application_state.wake_count % 32);
|
||||
watch_display_string(buf, 2);
|
||||
|
||||
// display "Hello there" text
|
||||
switch (application_state.mode) {
|
||||
case MODE_HELLO:
|
||||
watch_display_string("Hello", 5);
|
||||
break;
|
||||
case MODE_THERE:
|
||||
watch_display_string("there", 5);
|
||||
break;
|
||||
}
|
||||
|
||||
if (application_state.enter_deep_sleep) {
|
||||
application_state.enter_deep_sleep = false;
|
||||
|
||||
// stash our application state in the backup registers
|
||||
watch_store_backup_data((uint32_t)application_state.mode, 0);
|
||||
watch_store_backup_data((uint32_t)application_state.color, 1);
|
||||
watch_store_backup_data((uint32_t)application_state.wake_count, 2);
|
||||
|
||||
// turn off the LED
|
||||
watch_set_led_off();
|
||||
|
||||
// wait a moment for the user's finger to be off the button
|
||||
delay_ms(1000);
|
||||
|
||||
// nap time :)
|
||||
watch_enter_deep_sleep();
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Implementations for our callback functions. Replace these with whatever functionality
|
||||
// your app requires.
|
||||
void cb_light_pressed() {
|
||||
// always turn the light off when the pin goes low
|
||||
if (watch_get_pin_level(BTN_LIGHT) == 0) {
|
||||
application_state.light_on = false;
|
||||
return;
|
||||
}
|
||||
application_state.color = (application_state.color + 1) % 3;
|
||||
application_state.light_on = true;
|
||||
}
|
||||
|
||||
void cb_mode_pressed() {
|
||||
application_state.mode = (application_state.mode + 1) % 2;
|
||||
}
|
||||
|
||||
void cb_alarm_pressed() {
|
||||
// boo: http://ww1.microchip.com/downloads/en/DeviceDoc/SAM_L22_Family_Errata_DS80000782B.pdf
|
||||
// Reference 15010. doesn't say it applies to PA02 but it seems it does?
|
||||
// anyway can't deep sleep now :(
|
||||
// application_state.enter_deep_sleep = true;
|
||||
}
|
||||
1
apps/Sensor Watch Starter Project/make/.gitignore
vendored
Executable file
1
apps/Sensor Watch Starter Project/make/.gitignore
vendored
Executable file
@@ -0,0 +1 @@
|
||||
build/
|
||||
26
apps/Sensor Watch Starter Project/make/Makefile
Executable file
26
apps/Sensor Watch Starter Project/make/Makefile
Executable file
@@ -0,0 +1,26 @@
|
||||
# Leave these lines at the top of the file.
|
||||
# TOP should get us to the root of the project...
|
||||
TOP = ../../..
|
||||
# ...and make.mk has all the watch library sources and includes.
|
||||
include $(TOP)/make.mk
|
||||
|
||||
# If you add any other subdirectories with header files you wish to include, add them after ../
|
||||
# Note that you will need to add a backslash at the end of any line you wish to continue, i.e.
|
||||
# INCLUDES += \
|
||||
# -I../ \
|
||||
# -I../drivers/ \
|
||||
# -I../utils/
|
||||
INCLUDES += \
|
||||
-I../ \
|
||||
|
||||
# If you add any other source files you wish to compile, add them after ../app.c
|
||||
# Note that you will need to add a backslash at the end of any line you wish to continue, i.e.
|
||||
# SRCS += \
|
||||
# ../app.c \
|
||||
# ../drivers/bmp280.c \
|
||||
# ../utils/temperature.c
|
||||
SRCS += \
|
||||
../app.c \
|
||||
|
||||
# Leave this line at the bottom of the file; rules.mk has all the targets for making your project.
|
||||
include $(TOP)/rules.mk
|
||||
Reference in New Issue
Block a user