Merge branch 'main' into more-asf-files

This commit is contained in:
Joey Castillo
2021-10-25 14:52:40 -04:00
84 changed files with 24965 additions and 1903 deletions

View File

@@ -271,7 +271,7 @@
// <i> Indicates whether the external interrupt 5 filter is enabled or not
// <id> eic_arch_filten5
#ifndef CONF_EIC_FILTEN5
#define CONF_EIC_FILTEN5 0
#define CONF_EIC_FILTEN5 1
#endif
// <q> External Interrupt 5 Event Output Enable
@@ -723,7 +723,12 @@
// </e>
// my god this is a hack. need to refactor this out of ASF and into our driver. - joey 10/19
#ifdef CRYSTALLESS
#define CONFIG_EIC_EXTINT_MAP {2, PIN_PA02}, {5, PIN_PB05}, {7, PIN_PA07},
#else
#define CONFIG_EIC_EXTINT_MAP {2, PIN_PA02}, {6, PIN_PA22}, {7, PIN_PA23},
#endif
// <<< end of configuration section >>>

View File

@@ -248,9 +248,14 @@
// <i> This defines the clock source for generic clock generator 3
// <id> gclk_gen_3_oscillator
#ifndef CONF_GCLK_GEN_3_SOURCE
#ifdef CRYSTALLESS
#define CONF_GCLK_GEN_3_SOURCE GCLK_GENCTRL_SRC_OSCULP32K
#else
#define CONF_GCLK_GEN_3_SOURCE GCLK_GENCTRL_SRC_XOSC32K
#endif
#endif
// <q> Run in Standby
// <i> Indicates whether Run in Standby is enabled or not
// <id> gclk_arch_gen_3_runstdby

View File

@@ -17,8 +17,12 @@
// <i> This defines the clock source for RTC
// <id> rtc_source_oscillator
#ifndef CONF_RTCCTRL_SRC
#ifdef CRYSTALLESS
#define CONF_RTCCTRL_SRC GCLK_GENCTRL_SRC_OSCULP32K
#else
#define CONF_RTCCTRL_SRC GCLK_GENCTRL_SRC_XOSC32K
#endif
#endif
// <q> Use 1 kHz output
// <id> rtc_1khz_selection

View File

@@ -6,6 +6,7 @@
#include <hpl_slcd_cm.h>
#include <peripheral_clk_config.h>
#include "pins.h"
// <h> Standard configuration
@@ -79,7 +80,7 @@
// <3=>128
// <id> slcd_arch_presc
#ifndef CONF_SLCD_PRESC
#define CONF_SLCD_PRESC 2
#define CONF_SLCD_PRESC 1
#endif
// <o> Clock Divider
@@ -94,7 +95,7 @@
// <7=>8
// <id> slcd_arch_ckdiv
#ifndef CONF_SLCD_CKDIV
#define CONF_SLCD_CKDIV 3
#define CONF_SLCD_CKDIV 5
#endif
/* TODO add frame frequency check */
@@ -2729,15 +2730,40 @@
} \
}
#define CONF_SLCD_LPENL \
((uint32_t)1 << 0 | (uint32_t)1 << 1 | (uint32_t)1 << 2 | (uint32_t)1 << 3 | (uint32_t)1 << 4 | (uint32_t)1 << 5 \
| (uint32_t)1 << 6 | (uint32_t)1 << 7 | (uint32_t)1 << 11 | (uint32_t)1 << 12 | (uint32_t)1 << 13 \
| (uint32_t)1 << 14 | (uint32_t)1 << 21 | (uint32_t)1 << 22 | (uint32_t)1 << 23 | (uint32_t)1 << 24 \
| (uint32_t)1 << 25 | (uint32_t)1 << 28 | (uint32_t)1 << 29 | (uint32_t)1 << 30 | (uint32_t)1 << 31 | 0)
#ifndef CONF_SLCD_LPENL
#define CONF_SLCD_LPENL (\
(uint32_t)1 << 0 | \
(uint32_t)1 << 1 | \
(uint32_t)1 << 2 | \
(uint32_t)1 << 3 | \
(uint32_t)1 << 4 | \
(uint32_t)1 << 5 | \
(uint32_t)1 << 6 | \
(uint32_t)1 << 7 | \
(uint32_t)1 << 11 | \
(uint32_t)1 << 12 | \
(uint32_t)1 << 13 | \
(uint32_t)1 << 14 | \
(uint32_t)1 << 21 | \
(uint32_t)1 << 22 | \
(uint32_t)1 << 23 | \
(uint32_t)1 << 24 | \
(uint32_t)1 << 25 | \
(uint32_t)1 << 28 | \
(uint32_t)1 << 29 | \
(uint32_t)1 << 30 | \
(uint32_t)1 << 31 | 0)
#endif // CONF_SLCD_LPENL
#define CONF_SLCD_LPENH \
((uint32_t)1 << 0 | (uint32_t)1 << 1 | (uint32_t)1 << 2 | (uint32_t)1 << 3 | (uint32_t)1 << 10 | (uint32_t)1 << 11 \
| 0) // </e>
#ifndef CONF_SLCD_LPENH
#define CONF_SLCD_LPENH (\
(uint32_t)1 << (32 - 32) | \
(uint32_t)1 << (33 - 32) | \
(uint32_t)1 << (34 - 32) | \
(uint32_t)1 << (35 - 32) | \
(uint32_t)1 << (42 - 32) | \
(uint32_t)1 << (43 - 32) | 0)
#endif // CONF_SLCD_LPENH
// <<< end of configuration section >>>

View File

@@ -1,72 +0,0 @@
===============================
The Calendar driver (bare-bone)
===============================
The Calendar driver provides means to set and get current date and time.
After enabling, an instance of the driver starts counting time from the base date with
the resolution of one second. The default base date is 00:00:00 1st of January 1970.
Only the base year of the base date can be changed via the driver API.
The current date and time is kept internally in a relative form as the difference between
current date and time and the base date and time. This means that changing the base year changes
current date.
The base date and time defines time "zero" or the earliest possible point in time that the calender driver can describe,
this means that current time and alarms can not be set to anything earlier than this time.
The Calendar driver provides alarm functionality.
An alarm is a software trigger which fires on particular date and time with particular periodicity.
Upon firing the given callback function is called.
An alarm can be in single-shot mode, firing only once at matching time; or in repeating mode, meaning that it will
reschedule a new alarm automatically based on repeating mode configuration.
In single-shot mode an alarm is removed from the alarm queue before its callback is called. It allows an application to
reuse the memory of expired alarm in the callback.
An alarm can be triggered on the following events: match on second, minute, hour, day, month or year.
Matching on second means that the alarm is triggered when the value of seconds of the current time is equal to
the alarm's value of seconds. This means repeating alarm with match on seconds is triggered with the period of a minute.
Matching on minute means that the calendars minute and seconds values has to match the alarms, the rest of the date-time
value is ignored. In repeating mode this means a new alarm every hour.
The same logic is applied to match on hour, day, month and year.
Each instance of the Calendar driver supports infinite amount of software alarms, only limited by the amount of RAM available.
Features
--------
* Initialization and de-initialization
* Enabling and disabling
* Date and time operations
* Software alarms
Applications
------------
* A source of current date and time for an embedded system.
* Periodical functionality in low-power applications since the driver is designed to use 1Hz clock.
* Periodical function calls in case if it is more convenient to operate with absolute time.
Dependencies
------------
* This driver expects a counter to be increased by one every second to count date and time correctly.
* Each instance of the driver requires separate hardware timer.
Concurrency
-----------
The Calendar driver is an interrupt driven driver.This means that the interrupt that triggers an alarm may occur during
the process of adding or removing an alarm via the driver's API. In such case the interrupt processing is postponed
until the alarm adding or removing is complete.
The alarm queue is not protected from the access by interrupts not used by the driver. Due to this
it is not recommended to add or remove an alarm from such interrupts: in case if a higher priority interrupt supersedes
the driver's interrupt, adding or removing an alarm may cause unpredictable behavior of the driver.
Limitations
-----------
* Only years divisible by 4 are deemed a leap year, this gives a correct result between the years 1901 to 2099.
* The driver is designed to work outside of an operating system environment, the software alarm queue is therefore processed in interrupt context which may delay execution of other interrupts.
* If there are a lot of frequently called interrupts with the priority higher than the driver's one, it may cause delay in alarm's triggering.
* Changing the base year or setting current date or time does not shift alarms' date and time accordingly or expires alarms.
Knows issues and workarounds
----------------------------
Not applicable

View File

@@ -1,159 +0,0 @@
/**
* \file
*
* \brief Generic CALENDAR functionality declaration.
*
* Copyright (c) 2014-2018 Microchip Technology Inc. and its subsidiaries.
*
* \asf_license_start
*
* \page License
*
* Subject to your compliance with these terms, you may use Microchip
* software and any derivatives exclusively with Microchip products.
* It is your responsibility to comply with third party license terms applicable
* to your use of third party software (including open source software) that
* may accompany Microchip software.
*
* THIS SOFTWARE IS SUPPLIED BY MICROCHIP "AS IS". NO WARRANTIES,
* WHETHER EXPRESS, IMPLIED OR STATUTORY, APPLY TO THIS SOFTWARE,
* INCLUDING ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
* AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL MICROCHIP BE
* LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL
* LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
* SOFTWARE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
* POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT
* ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY
* RELATED TO THIS SOFTWARE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY,
* THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THIS SOFTWARE.
*
* \asf_license_stop
*
*/
#ifndef _HAL_CALENDER_H_INCLUDED
#define _HAL_CALENDER_H_INCLUDED
#include "hpl_calendar.h"
#include <utils_list.h>
#ifdef __cplusplus
extern "C" {
#endif
/**
* \addtogroup doc_driver_hal_calendar_async
*
*@{
*/
/** \brief Prototype of callback on alarm match
* \param calendar Pointer to the HAL Calendar instance.
*/
typedef void (*calendar_cb_alarm_t)(struct calendar_descriptor *const calendar);
/** \brief Struct for alarm time
*/
struct calendar_alarm {
struct list_element elem;
struct _calendar_alarm cal_alarm;
calendar_cb_alarm_t callback;
};
/** \brief Initialize the Calendar HAL instance and hardware
*
* \param calendar Pointer to the HAL Calendar instance.
* \param hw Pointer to the hardware instance.
* \return Operation status of init
* \retval 0 Completed successfully.
*/
int32_t calendar_init(struct calendar_descriptor *const calendar, const void *hw);
/** \brief Reset the Calendar HAL instance and hardware
*
* Reset Calendar instance to hardware defaults.
*
* \param calendar Pointer to the HAL Calendar instance.
* \return Operation status of reset.
* \retval 0 Completed successfully.
*/
int32_t calendar_deinit(struct calendar_descriptor *const calendar);
/** \brief Enable the Calendar HAL instance and hardware
*
* \param calendar Pointer to the HAL Calendar instance.
* \return Operation status of init
* \retval 0 Completed successfully.
*/
int32_t calendar_enable(struct calendar_descriptor *const calendar);
/** \brief Disable the Calendar HAL instance and hardware
*
* Disable Calendar instance to hardware defaults.
*
* \param calendar Pointer to the HAL Calendar instance.
* \return Operation status of reset.
* \retval 0 Completed successfully.
*/
int32_t calendar_disable(struct calendar_descriptor *const calendar);
/** \brief Configure the base year for calendar HAL instance and hardware
*
* \param calendar Pointer to the HAL Calendar instance.
* \param p_base_year The desired base year.
* \retval 0 Completed successfully.
*/
int32_t calendar_set_baseyear(struct calendar_descriptor *const calendar, const uint32_t p_base_year);
/** \brief Configure the time for calendar HAL instance and hardware
*
* \param calendar Pointer to the HAL Calendar instance.
* \param p_calendar_time Pointer to the time configuration.
* \retval 0 Completed successfully.
*/
int32_t calendar_set_time(struct calendar_descriptor *const calendar, struct calendar_time *const p_calendar_time);
/** \brief Configure the date for calendar HAL instance and hardware
*
* \param calendar Pointer to the HAL Calendar instance.
* \param p_calendar_date Pointer to the date configuration.
* \return Operation status of time set.
* \retval 0 Completed successfully.
*/
int32_t calendar_set_date(struct calendar_descriptor *const calendar, struct calendar_date *const p_calendar_date);
/** \brief Get the time for calendar HAL instance and hardware
*
* \param calendar Pointer to the HAL Calendar instance.
* \param date_time Pointer to the value that will be filled with the current time.
* \return Operation status of time retrieve.
* \retval 0 Completed successfully.
*/
int32_t calendar_get_date_time(struct calendar_descriptor *const calendar, struct calendar_date_time *const date_time);
/** \brief Config the alarm time for calendar HAL instance and hardware
*
* Set the alarm time to calendar instance. If the callback is NULL, remove
* the alarm if the alarm is already added, otherwise, ignore the alarm.
*
* \param calendar Pointer to the HAL Calendar instance.
* \param alarm Pointer to the configuration.
* \param callback Pointer to the callback function.
* \return Operation status of alarm time set.
* \retval 0 Completed successfully.
*/
int32_t calendar_set_alarm(struct calendar_descriptor *const calendar, struct calendar_alarm *const alarm,
calendar_cb_alarm_t callback);
/** \brief Retrieve the current driver version
* \return Current driver version.
*/
uint32_t calendar_get_version(void);
/**@}*/
#ifdef __cplusplus
}
#endif
#endif /* _HAL_CALENDER_H_INCLUDED */

View File

@@ -33,68 +33,10 @@
#ifndef _HPL_CALENDER_H_INCLUDED
#define _HPL_CALENDER_H_INCLUDED
#include <compiler.h>
#include <utils_list.h>
#include "hpl_irq.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* \brief Calendar structure
*
* The Calendar structure forward declaration.
*/
struct calendar_dev;
/**
* \brief Available mask options for alarms.
*
* Available mask options for alarms.
*/
enum calendar_alarm_option {
/** Alarm disabled. */
CALENDAR_ALARM_MATCH_DISABLED = 0,
/** Alarm match on second. */
CALENDAR_ALARM_MATCH_SEC,
/** Alarm match on second and minute. */
CALENDAR_ALARM_MATCH_MIN,
/** Alarm match on second, minute, and hour. */
CALENDAR_ALARM_MATCH_HOUR,
/** Alarm match on second, minute, hour, and day. */
CALENDAR_ALARM_MATCH_DAY,
/** Alarm match on second, minute, hour, day, and month. */
CALENDAR_ALARM_MATCH_MONTH,
/** Alarm match on second, minute, hour, day, month and year. */
CALENDAR_ALARM_MATCH_YEAR
};
/**
* \brief Available mode for alarms.
*/
enum calendar_alarm_mode { ONESHOT = 1, REPEAT };
/**
* \brief Prototype of callback on alarm match
*/
typedef void (*calendar_drv_cb_t)();
typedef void (*calendar_drv_extwake_cb_t)(uint8_t reason);
/**
* \brief Structure of Calendar instance
*/
struct calendar_dev {
/** Pointer to the hardware base */
void *hw;
/** Alarm match callback */
calendar_drv_cb_t callback_alarm;
/** Tamper callback */
calendar_drv_extwake_cb_t callback_tamper;
/** Tick callback */
calendar_drv_cb_t callback_tick;
/** IRQ struct */
struct _irq_descriptor irq;
};
/**
* \brief Time struct for calendar
*/
@@ -119,17 +61,6 @@ struct calendar_date {
uint16_t year;
};
/** \brief Calendar driver struct
*
*/
struct calendar_descriptor {
struct calendar_dev device;
struct list_descriptor alarms;
/*base date/time = base_year/1/1/0/0/0(year/month/day/hour/min/sec)*/
uint32_t base_year;
uint8_t flags;
};
/** \brief Date&Time struct for calendar
*/
struct calendar_date_time {
@@ -137,188 +68,6 @@ struct calendar_date_time {
struct calendar_date date;
};
/** \brief struct for alarm time
*/
struct _calendar_alarm {
struct calendar_date_time datetime;
uint32_t timestamp;
enum calendar_alarm_option option;
enum calendar_alarm_mode mode;
};
/** \enum for tamper detection mode
*/
enum tamper_detection_mode { TAMPER_MODE_OFF = 0U, TAMPER_MODE_WAKE, TAMPER_MODE_CAPTURE, TAMPER_MODE_ACTL };
/** \enum for tamper detection mode
*/
enum tamper_id { TAMPID0 = 0U, TAMPID1, TAMPID2, TAMPID3, TAMPID4 };
/**
* \brief Initialize Calendar instance
*
* \param[in] dev The pointer to calendar device struct
*
* \return ERR_NONE on success, or an error code on failure.
*/
int32_t _calendar_init(struct calendar_dev *const dev);
/**
* \brief Deinitialize Calendar instance
*
* \param[in] dev The pointer to calendar device struct
*
* \return ERR_NONE on success, or an error code on failure.
*/
int32_t _calendar_deinit(struct calendar_dev *const dev);
/**
* \brief Enable Calendar instance
*
* \param[in] dev The pointer to calendar device struct
*
* \return ERR_NONE on success, or an error code on failure.
*/
int32_t _calendar_enable(struct calendar_dev *const dev);
/**
* \brief Disable Calendar instance
*
* \param[in] dev The pointer to calendar device struct
*
* \return ERR_NONE on success, or an error code on failure.
*/
int32_t _calendar_disable(struct calendar_dev *const dev);
/**
* \brief Set counter for calendar
*
* \param[in] dev The pointer to calendar device struct
* \param[in] counter The counter for set
*
* \return ERR_NONE on success, or an error code on failure.
*/
int32_t _calendar_set_counter(struct calendar_dev *const dev, const uint32_t counter);
/**
* \brief Get counter for calendar
*
* \param[in] dev The pointer to calendar device struct
*
* \return return current counter value
*/
uint32_t _calendar_get_counter(struct calendar_dev *const dev);
/**
* \brief Set compare value for calendar
*
* \param[in] dev The pointer to calendar device struct
* \param[in] comp The compare value for set
*
* \return ERR_NONE on success, or an error code on failure.
*/
int32_t _calendar_set_comp(struct calendar_dev *const dev, const uint32_t comp);
/**
* \brief Get compare value for calendar
*
* \param[in] dev The pointer to calendar device struct
*
* \return return current compare value
*/
uint32_t _calendar_get_comp(struct calendar_dev *const dev);
/**
* \brief Register callback for calendar alarm
*
* \param[in] dev The pointer to calendar device struct
* \param[in] callback The pointer to callback function
*
* \return ERR_NONE on success, or an error code on failure.
*/
int32_t _calendar_register_callback(struct calendar_dev *const dev, calendar_drv_cb_t callback);
/**
* \brief Set calendar IRQ
*
* \param[in] dev The pointer to calendar device struct
*/
void _calendar_set_irq(struct calendar_dev *const dev);
/**
* \brief Register callback for 1Hz tick from prescaler
*
* \param[in] dev The pointer to calendar device struct
* \param[in] callback The pointer to callback function
*
* \return ERR_NONE on success, or an error code on failure.
*/
int32_t _prescaler_register_callback(struct calendar_dev *const dev, calendar_drv_cb_t callback);
/**
* \brief Register callback for tamper detection
*
* \param[in] dev The pointer to calendar device struct
* \param[in] callback The pointer to callback function
*
* \return ERR_NONE on success, or an error code on failure.
*/
int32_t _extwake_register_callback(struct calendar_dev *const dev, calendar_drv_extwake_cb_t callback);
/**
* \brief Find tamper is detected on specified pin
*
* \param[in] dev The pointer to calendar device struct
* \param[in] enum Tamper ID number
*
* \return true on detection success and false on failure.
*/
bool _is_tamper_detected(struct calendar_dev *const dev, enum tamper_id tamper_id_pin);
/**
* \brief brief Clear the Tamper ID flag
*
* \param[in] dev The pointer to calendar device struct
* \param[in] enum Tamper ID number
*
* \return ERR_NONE
*/
int32_t _tamper_clear_tampid_flag(struct calendar_dev *const dev, enum tamper_id tamper_id_pin);
/**
* \brief Enable Debounce Asynchronous Feature
*
* \param[in] dev The pointer to calendar device struct
*
* \return ERR_NONE on success, or an error code on failure.
*/
int32_t _tamper_enable_debounce_asynchronous(struct calendar_dev *const dev);
/**
* \brief Disable Tamper Debounce Asynchronous Feature
*
* \param[in] dev The pointer to calendar device struct
*
* \return ERR_NONE on success, or an error code on failure.
*/
int32_t _tamper_disable_debounce_asynchronous(struct calendar_dev *const dev);
/**
* \brief Enable Tamper Debounce Majority Feature
*
* \param[in] dev The pointer to calendar device struct
*
* \return ERR_NONE on success, or an error code on failure.
*/
int32_t _tamper_enable_debounce_majority(struct calendar_dev *const dev);
/**
* \brief Enable Tamper Debounce Majority Feature
*
* \param[in] dev The pointer to calendar device struct
*
* \return ERR_NONE on success, or an error code on failure.
*/
int32_t _tamper_disable_debounce_majority(struct calendar_dev *const dev);
#ifdef __cplusplus
}
#endif

View File

@@ -1,645 +0,0 @@
/**
* \file
*
* \brief Generic CALENDAR functionality implementation.
*
* Copyright (c) 2014-2018 Microchip Technology Inc. and its subsidiaries.
*
* \asf_license_start
*
* \page License
*
* Subject to your compliance with these terms, you may use Microchip
* software and any derivatives exclusively with Microchip products.
* It is your responsibility to comply with third party license terms applicable
* to your use of third party software (including open source software) that
* may accompany Microchip software.
*
* THIS SOFTWARE IS SUPPLIED BY MICROCHIP "AS IS". NO WARRANTIES,
* WHETHER EXPRESS, IMPLIED OR STATUTORY, APPLY TO THIS SOFTWARE,
* INCLUDING ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
* AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL MICROCHIP BE
* LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL
* LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
* SOFTWARE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
* POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT
* ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY
* RELATED TO THIS SOFTWARE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY,
* THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THIS SOFTWARE.
*
* \asf_license_stop
*
*/
#include "hal_calendar.h"
#include <utils.h>
#include <utils_assert.h>
#include <hal_atomic.h>
#define CALENDAR_VERSION 0x00000001u
#define SECS_IN_LEAP_YEAR 31622400
#define SECS_IN_NON_LEAP_YEAR 31536000
#define SECS_IN_31DAYS 2678400
#define SECS_IN_30DAYS 2592000
#define SECS_IN_29DAYS 2505600
#define SECS_IN_28DAYS 2419200
#define SECS_IN_DAY 86400
#define SECS_IN_HOUR 3600
#define SECS_IN_MINUTE 60
#define DEFAULT_BASE_YEAR 1970
#define SET_ALARM_BUSY 1
#define PROCESS_ALARM_BUSY 2
/** \brief leap year check
* \retval false not leap year.
* \retval true leap year.
*/
static bool leap_year(uint16_t year)
{
if (year & 3) {
return false;
} else {
return true;
}
}
/** \brief calculate the seconds in specified year/month
* \retval 0 month error.
*/
static uint32_t get_secs_in_month(uint32_t year, uint8_t month)
{
uint32_t sec_in_month = 0;
if (leap_year(year)) {
switch (month) {
case 1:
case 3:
case 5:
case 7:
case 8:
case 10:
case 12:
sec_in_month = SECS_IN_31DAYS;
break;
case 2:
sec_in_month = SECS_IN_29DAYS;
break;
case 4:
case 6:
case 9:
case 11:
sec_in_month = SECS_IN_30DAYS;
break;
default:
break;
}
} else {
switch (month) {
case 1:
case 3:
case 5:
case 7:
case 8:
case 10:
case 12:
sec_in_month = SECS_IN_31DAYS;
break;
case 2:
sec_in_month = SECS_IN_28DAYS;
break;
case 4:
case 6:
case 9:
case 11:
sec_in_month = SECS_IN_30DAYS;
break;
default:
break;
}
}
return sec_in_month;
}
/** \brief convert timestamp to date/time
*/
static int32_t convert_timestamp_to_datetime(struct calendar_descriptor *const calendar, uint32_t ts,
struct calendar_date_time *dt)
{
uint32_t tmp, sec_in_year, sec_in_month;
uint32_t tmp_year = calendar->base_year;
uint8_t tmp_month = 1;
uint8_t tmp_day = 1;
uint8_t tmp_hour = 0;
uint8_t tmp_minutes = 0;
tmp = ts;
/* Find year */
while (true) {
sec_in_year = leap_year(tmp_year) ? SECS_IN_LEAP_YEAR : SECS_IN_NON_LEAP_YEAR;
if (tmp >= sec_in_year) {
tmp -= sec_in_year;
tmp_year++;
} else {
break;
}
}
/* Find month of year */
while (true) {
sec_in_month = get_secs_in_month(tmp_year, tmp_month);
if (tmp >= sec_in_month) {
tmp -= sec_in_month;
tmp_month++;
} else {
break;
}
}
/* Find day of month */
while (true) {
if (tmp >= SECS_IN_DAY) {
tmp -= SECS_IN_DAY;
tmp_day++;
} else {
break;
}
}
/* Find hour of day */
while (true) {
if (tmp >= SECS_IN_HOUR) {
tmp -= SECS_IN_HOUR;
tmp_hour++;
} else {
break;
}
}
/* Find minute in hour */
while (true) {
if (tmp >= SECS_IN_MINUTE) {
tmp -= SECS_IN_MINUTE;
tmp_minutes++;
} else {
break;
}
}
dt->date.year = tmp_year;
dt->date.month = tmp_month;
dt->date.day = tmp_day;
dt->time.hour = tmp_hour;
dt->time.min = tmp_minutes;
dt->time.sec = tmp;
return ERR_NONE;
}
/** \brief convert date/time to timestamp
* \return timestamp
*/
static uint32_t convert_datetime_to_timestamp(struct calendar_descriptor *const calendar, struct calendar_date_time *dt)
{
uint32_t tmp = 0;
uint32_t i = 0;
uint8_t year, month, day, hour, minutes, seconds;
year = dt->date.year - calendar->base_year;
month = dt->date.month;
day = dt->date.day;
hour = dt->time.hour;
minutes = dt->time.min;
seconds = dt->time.sec;
/* tot up year field */
for (i = 0; i < year; ++i) {
if (leap_year(calendar->base_year + i)) {
tmp += SECS_IN_LEAP_YEAR;
} else {
tmp += SECS_IN_NON_LEAP_YEAR;
}
}
/* tot up month field */
for (i = 1; i < month; ++i) {
tmp += get_secs_in_month(dt->date.year, i);
}
/* tot up day/hour/minute/second fields */
tmp += (day - 1) * SECS_IN_DAY;
tmp += hour * SECS_IN_HOUR;
tmp += minutes * SECS_IN_MINUTE;
tmp += seconds;
return tmp;
}
/** \brief calibrate timestamp to make desired timestamp ahead of current timestamp
*/
static void calibrate_timestamp(struct calendar_descriptor *const calendar, struct calendar_alarm *alarm,
struct calendar_alarm *current_dt)
{
uint32_t alarm_ts;
uint32_t current_ts = current_dt->cal_alarm.timestamp;
(void)calendar;
alarm_ts = alarm->cal_alarm.timestamp;
/* calibrate timestamp */
switch (alarm->cal_alarm.option) {
case CALENDAR_ALARM_MATCH_SEC:
if (alarm_ts <= current_ts) {
alarm_ts += SECS_IN_MINUTE;
}
break;
case CALENDAR_ALARM_MATCH_MIN:
if (alarm_ts <= current_ts) {
alarm_ts += SECS_IN_HOUR;
}
break;
case CALENDAR_ALARM_MATCH_HOUR:
if (alarm_ts <= current_ts) {
alarm_ts += SECS_IN_DAY;
}
break;
case CALENDAR_ALARM_MATCH_DAY:
if (alarm_ts <= current_ts) {
alarm_ts += get_secs_in_month(current_dt->cal_alarm.datetime.date.year,
current_dt->cal_alarm.datetime.date.month);
}
break;
case CALENDAR_ALARM_MATCH_MONTH:
if (alarm_ts <= current_ts) {
if (leap_year(current_dt->cal_alarm.datetime.date.year)) {
alarm_ts += SECS_IN_LEAP_YEAR;
} else {
alarm_ts += SECS_IN_NON_LEAP_YEAR;
}
}
break;
/* do nothing for year match */
case CALENDAR_ALARM_MATCH_YEAR:
default:
break;
}
/* desired timestamp after calibration */
alarm->cal_alarm.timestamp = alarm_ts;
}
/** \brief complete alarm to absolute date/time, then fill up the timestamp
*/
static void fill_alarm(struct calendar_descriptor *const calendar, struct calendar_alarm *alarm)
{
struct calendar_alarm current_dt;
uint32_t tmp, current_ts;
/* get current date/time */
current_ts = _calendar_get_counter(&calendar->device);
convert_timestamp_to_datetime(calendar, current_ts, &current_dt.cal_alarm.datetime);
current_dt.cal_alarm.timestamp = current_ts;
/* complete alarm */
switch (alarm->cal_alarm.option) {
case CALENDAR_ALARM_MATCH_SEC:
alarm->cal_alarm.datetime.date.year = current_dt.cal_alarm.datetime.date.year;
alarm->cal_alarm.datetime.date.month = current_dt.cal_alarm.datetime.date.month;
alarm->cal_alarm.datetime.date.day = current_dt.cal_alarm.datetime.date.day;
alarm->cal_alarm.datetime.time.hour = current_dt.cal_alarm.datetime.time.hour;
alarm->cal_alarm.datetime.time.min = current_dt.cal_alarm.datetime.time.min;
break;
case CALENDAR_ALARM_MATCH_MIN:
alarm->cal_alarm.datetime.date.year = current_dt.cal_alarm.datetime.date.year;
alarm->cal_alarm.datetime.date.month = current_dt.cal_alarm.datetime.date.month;
alarm->cal_alarm.datetime.date.day = current_dt.cal_alarm.datetime.date.day;
alarm->cal_alarm.datetime.time.hour = current_dt.cal_alarm.datetime.time.hour;
break;
case CALENDAR_ALARM_MATCH_HOUR:
alarm->cal_alarm.datetime.date.year = current_dt.cal_alarm.datetime.date.year;
alarm->cal_alarm.datetime.date.month = current_dt.cal_alarm.datetime.date.month;
alarm->cal_alarm.datetime.date.day = current_dt.cal_alarm.datetime.date.day;
break;
case CALENDAR_ALARM_MATCH_DAY:
alarm->cal_alarm.datetime.date.year = current_dt.cal_alarm.datetime.date.year;
alarm->cal_alarm.datetime.date.month = current_dt.cal_alarm.datetime.date.month;
break;
case CALENDAR_ALARM_MATCH_MONTH:
alarm->cal_alarm.datetime.date.year = current_dt.cal_alarm.datetime.date.year;
break;
case CALENDAR_ALARM_MATCH_YEAR:
break;
default:
break;
}
/* fill up the timestamp */
tmp = convert_datetime_to_timestamp(calendar, &alarm->cal_alarm.datetime);
alarm->cal_alarm.timestamp = tmp;
/* calibrate the timestamp */
calibrate_timestamp(calendar, alarm, &current_dt);
convert_timestamp_to_datetime(calendar, alarm->cal_alarm.timestamp, &alarm->cal_alarm.datetime);
}
/** \brief add new alarm into the list in ascending order
*/
static int32_t calendar_add_new_alarm(struct list_descriptor *list, struct calendar_alarm *alarm)
{
struct calendar_descriptor *calendar = CONTAINER_OF(list, struct calendar_descriptor, alarms);
struct calendar_alarm * head, *it, *prev = NULL;
/*get the head of alarms list*/
head = (struct calendar_alarm *)list_get_head(list);
/*if head is null, insert new alarm as head*/
if (!head) {
list_insert_as_head(list, alarm);
_calendar_set_comp(&calendar->device, alarm->cal_alarm.timestamp);
return ERR_NONE;
}
/*insert the new alarm in accending order, the head will be invoked firstly */
for (it = head; it; it = (struct calendar_alarm *)list_get_next_element(it)) {
if (alarm->cal_alarm.timestamp <= it->cal_alarm.timestamp) {
break;
}
prev = it;
}
/*insert new alarm into the list */
if (it == head) {
list_insert_as_head(list, alarm);
/*get the head and set it into register*/
_calendar_set_comp(&calendar->device, alarm->cal_alarm.timestamp);
} else {
list_insert_after(prev, alarm);
}
return ERR_NONE;
}
/** \brief callback for alarm
*/
static void calendar_alarm(struct calendar_dev *const dev)
{
struct calendar_descriptor *calendar = CONTAINER_OF(dev, struct calendar_descriptor, device);
struct calendar_alarm *head, *it, current_dt;
if ((calendar->flags & SET_ALARM_BUSY) || (calendar->flags & PROCESS_ALARM_BUSY)) {
calendar->flags |= PROCESS_ALARM_BUSY;
return;
}
/* get current timestamp */
current_dt.cal_alarm.timestamp = _calendar_get_counter(dev);
/* get the head */
head = (struct calendar_alarm *)list_get_head(&calendar->alarms);
ASSERT(head);
/* remove all alarms and invoke them*/
for (it = head; it; it = (struct calendar_alarm *)list_get_head(&calendar->alarms)) {
/* check the timestamp with current timestamp*/
if (it->cal_alarm.timestamp <= current_dt.cal_alarm.timestamp) {
list_remove_head(&calendar->alarms);
it->callback(calendar);
if (it->cal_alarm.mode == REPEAT) {
calibrate_timestamp(calendar, it, &current_dt);
convert_timestamp_to_datetime(calendar, it->cal_alarm.timestamp, &it->cal_alarm.datetime);
calendar_add_new_alarm(&calendar->alarms, it);
}
} else {
break;
}
}
/*if no alarm in the list, register null */
if (!it) {
_calendar_register_callback(&calendar->device, NULL);
return;
}
/*put the new head into register */
_calendar_set_comp(&calendar->device, it->cal_alarm.timestamp);
}
/** \brief Initialize Calendar
*/
int32_t calendar_init(struct calendar_descriptor *const calendar, const void *hw)
{
int32_t ret = 0;
/* Sanity check arguments */
ASSERT(calendar);
if (calendar->device.hw == hw) {
/* Already initialized with current configuration */
return ERR_NONE;
} else if (calendar->device.hw != NULL) {
/* Initialized with another configuration */
return ERR_ALREADY_INITIALIZED;
}
calendar->device.hw = (void *)hw;
ret = _calendar_init(&calendar->device);
calendar->base_year = DEFAULT_BASE_YEAR;
return ret;
}
/** \brief Reset the Calendar
*/
int32_t calendar_deinit(struct calendar_descriptor *const calendar)
{
/* Sanity check arguments */
ASSERT(calendar);
if (calendar->device.hw == NULL) {
return ERR_NOT_INITIALIZED;
}
_calendar_deinit(&calendar->device);
calendar->device.hw = NULL;
return ERR_NONE;
}
/** \brief Enable the Calendar
*/
int32_t calendar_enable(struct calendar_descriptor *const calendar)
{
/* Sanity check arguments */
ASSERT(calendar);
_calendar_enable(&calendar->device);
return ERR_NONE;
}
/** \brief Disable the Calendar
*/
int32_t calendar_disable(struct calendar_descriptor *const calendar)
{
/* Sanity check arguments */
ASSERT(calendar);
_calendar_disable(&calendar->device);
return ERR_NONE;
}
/** \brief Set base year for calendar
*/
int32_t calendar_set_baseyear(struct calendar_descriptor *const calendar, const uint32_t p_base_year)
{
/* Sanity check arguments */
ASSERT(calendar);
calendar->base_year = p_base_year;
return ERR_NONE;
}
/** \brief Set time for calendar
*/
int32_t calendar_set_time(struct calendar_descriptor *const calendar, struct calendar_time *const p_calendar_time)
{
struct calendar_date_time dt;
uint32_t current_ts, new_ts;
/* Sanity check arguments */
ASSERT(calendar);
/* convert time to timestamp */
current_ts = _calendar_get_counter(&calendar->device);
convert_timestamp_to_datetime(calendar, current_ts, &dt);
dt.time.sec = p_calendar_time->sec;
dt.time.min = p_calendar_time->min;
dt.time.hour = p_calendar_time->hour;
new_ts = convert_datetime_to_timestamp(calendar, &dt);
_calendar_set_counter(&calendar->device, new_ts);
return ERR_NONE;
}
/** \brief Set date for calendar
*/
int32_t calendar_set_date(struct calendar_descriptor *const calendar, struct calendar_date *const p_calendar_date)
{
struct calendar_date_time dt;
uint32_t current_ts, new_ts;
/* Sanity check arguments */
ASSERT(calendar);
/* convert date to timestamp */
current_ts = _calendar_get_counter(&calendar->device);
convert_timestamp_to_datetime(calendar, current_ts, &dt);
dt.date.day = p_calendar_date->day;
dt.date.month = p_calendar_date->month;
dt.date.year = p_calendar_date->year;
new_ts = convert_datetime_to_timestamp(calendar, &dt);
_calendar_set_counter(&calendar->device, new_ts);
return ERR_NONE;
}
/** \brief Get date/time for calendar
*/
int32_t calendar_get_date_time(struct calendar_descriptor *const calendar, struct calendar_date_time *const date_time)
{
uint32_t current_ts;
/* Sanity check arguments */
ASSERT(calendar);
/* convert current timestamp to date/time */
current_ts = _calendar_get_counter(&calendar->device);
convert_timestamp_to_datetime(calendar, current_ts, date_time);
return ERR_NONE;
}
/** \brief Set alarm for calendar
*/
int32_t calendar_set_alarm(struct calendar_descriptor *const calendar, struct calendar_alarm *const alarm,
calendar_cb_alarm_t callback)
{
struct calendar_alarm *head;
/* Sanity check arguments */
ASSERT(calendar);
ASSERT(alarm);
alarm->callback = callback;
fill_alarm(calendar, alarm);
calendar->flags |= SET_ALARM_BUSY;
head = (struct calendar_alarm *)list_get_head(&calendar->alarms);
if (head != NULL) {
/* already added */
if (is_list_element(&calendar->alarms, alarm)) {
if (callback == NULL) {
/* remove alarm */
list_delete_element(&calendar->alarms, alarm);
if (!list_get_head(&calendar->alarms)) {
_calendar_register_callback(&calendar->device, NULL);
}
} else {
/* re-add */
list_delete_element(&calendar->alarms, alarm);
calendar_add_new_alarm(&calendar->alarms, alarm);
}
} else if (callback != NULL) {
calendar_add_new_alarm(&calendar->alarms, alarm);
}
calendar->flags &= ~SET_ALARM_BUSY;
if (calendar->flags & PROCESS_ALARM_BUSY) {
CRITICAL_SECTION_ENTER()
calendar->flags &= ~PROCESS_ALARM_BUSY;
_calendar_set_irq(&calendar->device);
CRITICAL_SECTION_LEAVE()
}
} else if (callback != NULL) {
/* if head is NULL, Register callback*/
_calendar_register_callback(&calendar->device, calendar_alarm);
calendar_add_new_alarm(&calendar->alarms, alarm);
}
calendar->flags &= ~SET_ALARM_BUSY;
return ERR_NONE;
}
/** \brief Retrieve driver version
* \return Current driver version
*/
uint32_t calendar_get_version(void)
{
return CALENDAR_VERSION;
}

View File

@@ -1,430 +0,0 @@
/**
* \file
*
* \brief RTC Driver
*
* Copyright (c) 2014-2018 Microchip Technology Inc. and its subsidiaries.
*
* \asf_license_start
*
* \page License
*
* Subject to your compliance with these terms, you may use Microchip
* software and any derivatives exclusively with Microchip products.
* It is your responsibility to comply with third party license terms applicable
* to your use of third party software (including open source software) that
* may accompany Microchip software.
*
* THIS SOFTWARE IS SUPPLIED BY MICROCHIP "AS IS". NO WARRANTIES,
* WHETHER EXPRESS, IMPLIED OR STATUTORY, APPLY TO THIS SOFTWARE,
* INCLUDING ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
* AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL MICROCHIP BE
* LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL
* LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
* SOFTWARE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
* POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT
* ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY
* RELATED TO THIS SOFTWARE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY,
* THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THIS SOFTWARE.
*
* \asf_license_stop
*
*/
#include <hpl_calendar.h>
#include <utils_assert.h>
#include <hpl_rtc_config.h>
/*!< Pointer to hpl device */
static struct calendar_dev *_rtc_dev = NULL;
/**
* \brief Initializes the RTC module with given configurations.
*/
int32_t _calendar_init(struct calendar_dev *const dev)
{
ASSERT(dev && dev->hw);
_rtc_dev = dev;
if (hri_rtcmode0_get_CTRLA_ENABLE_bit(dev->hw)) {
#if !CONF_RTC_INIT_RESET
return ERR_DENIED;
#else
hri_rtcmode0_clear_CTRLA_ENABLE_bit(dev->hw);
hri_rtcmode0_wait_for_sync(dev->hw, RTC_MODE0_SYNCBUSY_ENABLE);
#endif
}
hri_rtcmode0_set_CTRLA_SWRST_bit(dev->hw);
hri_rtcmode0_wait_for_sync(dev->hw, RTC_MODE0_SYNCBUSY_SWRST);
#if CONF_RTC_EVENT_CONTROL_ENABLE == 1
hri_rtcmode0_write_EVCTRL_reg(
dev->hw,
(CONF_RTC_PEREO0 << RTC_MODE0_EVCTRL_PEREO0_Pos) | (CONF_RTC_PEREO1 << RTC_MODE0_EVCTRL_PEREO1_Pos)
| (CONF_RTC_PEREO2 << RTC_MODE0_EVCTRL_PEREO2_Pos) | (CONF_RTC_PEREO3 << RTC_MODE0_EVCTRL_PEREO3_Pos)
| (CONF_RTC_PEREO4 << RTC_MODE0_EVCTRL_PEREO4_Pos) | (CONF_RTC_PEREO5 << RTC_MODE0_EVCTRL_PEREO5_Pos)
| (CONF_RTC_PEREO6 << RTC_MODE0_EVCTRL_PEREO6_Pos) | (CONF_RTC_PEREO7 << RTC_MODE0_EVCTRL_PEREO7_Pos)
| (CONF_RTC_COMPE0 << RTC_MODE0_EVCTRL_CMPEO_Pos) | (CONF_RTC_OVFEO << RTC_MODE0_EVCTRL_OVFEO_Pos));
#endif
hri_rtcmode0_write_CTRLA_reg(dev->hw, RTC_MODE0_CTRLA_PRESCALER(CONF_RTC_PRESCALER) | RTC_MODE0_CTRLA_COUNTSYNC);
hri_rtc_write_TAMPCTRL_reg(
dev->hw,
(CONF_RTC_TAMPER_INACT_0 << RTC_TAMPCTRL_IN0ACT_Pos) | (CONF_RTC_TAMPER_INACT_1 << RTC_TAMPCTRL_IN1ACT_Pos)
| (CONF_RTC_TAMPER_INACT_2 << RTC_TAMPCTRL_IN2ACT_Pos)
| (CONF_RTC_TAMPER_INACT_3 << RTC_TAMPCTRL_IN3ACT_Pos)
| (CONF_RTC_TAMPER_INACT_4 << RTC_TAMPCTRL_IN4ACT_Pos) | (CONF_RTC_TAMP_LVL_0 << RTC_TAMPCTRL_TAMLVL0_Pos)
| (CONF_RTC_TAMP_LVL_1 << RTC_TAMPCTRL_TAMLVL1_Pos) | (CONF_RTC_TAMP_LVL_2 << RTC_TAMPCTRL_TAMLVL2_Pos)
| (CONF_RTC_TAMP_LVL_3 << RTC_TAMPCTRL_TAMLVL3_Pos) | (CONF_RTC_TAMP_LVL_4 << RTC_TAMPCTRL_TAMLVL4_Pos)
| (CONF_RTC_TAMP_DEBNC_0 << RTC_TAMPCTRL_DEBNC0_Pos) | (CONF_RTC_TAMP_DEBNC_1 << RTC_TAMPCTRL_DEBNC1_Pos)
| (CONF_RTC_TAMP_DEBNC_2 << RTC_TAMPCTRL_DEBNC2_Pos) | (CONF_RTC_TAMP_DEBNC_3 << RTC_TAMPCTRL_DEBNC3_Pos)
| (CONF_RTC_TAMP_DEBNC_4 << RTC_TAMPCTRL_DEBNC4_Pos));
if ((CONF_RTC_TAMPER_INACT_0 == TAMPER_MODE_ACTL) | (CONF_RTC_TAMPER_INACT_1 == TAMPER_MODE_ACTL)
| (CONF_RTC_TAMPER_INACT_2 == TAMPER_MODE_ACTL) | (CONF_RTC_TAMPER_INACT_3 == TAMPER_MODE_ACTL)
| (CONF_RTC_TAMPER_INACT_4 == TAMPER_MODE_ACTL)) {
hri_rtcmode0_set_CTRLB_RTCOUT_bit(dev->hw);
}
return ERR_NONE;
}
/**
* \brief Deinit the RTC module
*/
int32_t _calendar_deinit(struct calendar_dev *const dev)
{
ASSERT(dev && dev->hw);
NVIC_DisableIRQ(RTC_IRQn);
dev->callback_alarm = NULL;
dev->callback_tick = NULL;
dev->callback_tamper = NULL;
hri_rtcmode0_clear_CTRLA_ENABLE_bit(dev->hw);
hri_rtcmode0_set_CTRLA_SWRST_bit(dev->hw);
return ERR_NONE;
}
/**
* \brief Enable the RTC module
*/
int32_t _calendar_enable(struct calendar_dev *const dev)
{
ASSERT(dev && dev->hw);
hri_rtcmode0_set_CTRLA_ENABLE_bit(dev->hw);
return ERR_NONE;
}
/**
* \brief Disable the RTC module
*/
int32_t _calendar_disable(struct calendar_dev *const dev)
{
ASSERT(dev && dev->hw);
hri_rtcmode0_clear_CTRLA_ENABLE_bit(dev->hw);
return ERR_NONE;
}
/**
* \brief Set the current calendar time to desired time.
*/
int32_t _calendar_set_counter(struct calendar_dev *const dev, const uint32_t counter)
{
ASSERT(dev && dev->hw);
hri_rtcmode0_write_COUNT_reg(dev->hw, counter);
return ERR_NONE;
}
/**
* \brief Get current counter
*/
uint32_t _calendar_get_counter(struct calendar_dev *const dev)
{
ASSERT(dev && dev->hw);
return hri_rtcmode0_read_COUNT_reg(dev->hw);
}
/**
* \brief Set the compare for the specified value.
*/
int32_t _calendar_set_comp(struct calendar_dev *const dev, const uint32_t comp)
{
ASSERT(dev && dev->hw);
hri_rtcmode0_write_COMP_reg(dev->hw, 0, comp);
return ERR_NONE;
}
/**
* \brief Get the compare value
*/
uint32_t _calendar_get_comp(struct calendar_dev *const dev)
{
ASSERT(dev && dev->hw);
return hri_rtcmode0_read_COMP_reg(dev->hw, 0);
}
/**
* \brief Find tamper is detected on specified pin
*/
bool _is_tamper_detected(struct calendar_dev *const dev, enum tamper_id tamper_id_pin)
{
bool value;
ASSERT(dev && dev->hw);
value = ((hri_rtc_read_TAMPID_reg(dev->hw) >> tamper_id_pin) & 0x01);
return value;
}
/**
* \brief Clear the Tamper ID flag
*/
int32_t _tamper_clear_tampid_flag(struct calendar_dev *const dev, enum tamper_id tamper_id_pin)
{
ASSERT(dev && dev->hw);
hri_rtc_write_TAMPID_reg(dev->hw, (true << tamper_id_pin));
return ERR_NONE;
}
/**
* \brief Enable Tamper Debounce Asynchronous Feature
*/
int32_t _tamper_enable_debounce_asynchronous(struct calendar_dev *const dev)
{
int32_t return_value;
hri_rtcmode0_write_CTRLA_ENABLE_bit(dev->hw, false);
while (hri_rtcmode0_read_SYNCBUSY_reg(dev->hw) & RTC_MODE2_CTRLA_ENABLE) {
}
if (hri_rtcmode0_read_CTRLA_reg(dev->hw) & RTC_MODE2_CTRLA_ENABLE) {
return_value = ERR_FAILURE;
} else {
hri_rtcmode0_write_CTRLB_DEBASYNC_bit(dev->hw, true);
return_value = ERR_NONE;
while (hri_rtcmode0_read_SYNCBUSY_reg(dev->hw) & RTC_MODE2_CTRLA_ENABLE) {
}
hri_rtcmode0_write_CTRLA_ENABLE_bit(dev->hw, true);
}
return return_value;
}
/**
* \brief Disable Tamper Debounce Asynchronous Feature
*/
int32_t _tamper_disable_debounce_asynchronous(struct calendar_dev *const dev)
{
int32_t return_value;
hri_rtcmode0_write_CTRLA_ENABLE_bit(dev->hw, false);
while (hri_rtcmode0_read_SYNCBUSY_reg(dev->hw) & RTC_MODE2_CTRLA_ENABLE) {
}
if (hri_rtcmode0_read_CTRLA_reg(dev->hw) & RTC_MODE2_CTRLA_ENABLE) {
return_value = ERR_FAILURE;
} else {
hri_rtcmode0_write_CTRLB_DEBASYNC_bit(dev->hw, false);
return_value = ERR_NONE;
while (hri_rtcmode0_read_SYNCBUSY_reg(dev->hw) & RTC_MODE2_CTRLA_ENABLE) {
}
hri_rtcmode0_write_CTRLA_ENABLE_bit(dev->hw, true);
}
return return_value;
}
/**
* \brief Enable Tamper Debounce Majority Feature
*/
int32_t _tamper_enable_debounce_majority(struct calendar_dev *const dev)
{
int32_t return_value;
hri_rtcmode0_write_CTRLA_ENABLE_bit(dev->hw, false);
while (hri_rtcmode0_read_SYNCBUSY_reg(dev->hw) & RTC_MODE2_CTRLA_ENABLE) {
}
if (hri_rtcmode0_read_CTRLA_reg(dev->hw) & RTC_MODE2_CTRLA_ENABLE) {
return_value = ERR_FAILURE;
} else {
hri_rtcmode0_write_CTRLB_DEBMAJ_bit(dev->hw, true);
return_value = ERR_NONE;
while (hri_rtcmode0_read_SYNCBUSY_reg(dev->hw) & RTC_MODE2_CTRLA_ENABLE) {
}
hri_rtcmode0_write_CTRLA_ENABLE_bit(dev->hw, true);
}
return return_value;
}
/**
* \brief Disable Tamper Debounce Majority Feature
*/
int32_t _tamper_disable_debounce_majority(struct calendar_dev *const dev)
{
int32_t return_value;
hri_rtcmode0_write_CTRLA_ENABLE_bit(dev->hw, false);
while (hri_rtcmode0_read_SYNCBUSY_reg(dev->hw) & RTC_MODE2_CTRLA_ENABLE) {
}
if (hri_rtcmode0_read_CTRLA_reg(dev->hw) & RTC_MODE2_CTRLA_ENABLE) {
return_value = ERR_FAILURE;
} else {
hri_rtcmode0_write_CTRLB_DEBMAJ_bit(dev->hw, false);
return_value = ERR_NONE;
while (hri_rtcmode0_read_SYNCBUSY_reg(dev->hw) & RTC_MODE2_CTRLA_ENABLE) {
}
hri_rtcmode0_write_CTRLA_ENABLE_bit(dev->hw, true);
}
return return_value;
}
int32_t _prescaler_register_callback(struct calendar_dev *const dev, calendar_drv_cb_t callback)
{
ASSERT(dev && dev->hw);
/* Check callback */
if (callback != NULL) {
/* register the callback */
dev->callback_tick = callback;
/* enable RTC_IRQn */
NVIC_ClearPendingIRQ(RTC_IRQn);
NVIC_EnableIRQ(RTC_IRQn);
/* enable periodic interrupt */
hri_rtcmode0_set_INTEN_PER7_bit(dev->hw);
} else {
/* disable periodic interrupt */
hri_rtcmode0_clear_INTEN_PER7_bit(dev->hw);
}
return ERR_NONE;
}
int32_t _extwake_register_callback(struct calendar_dev *const dev, calendar_drv_extwake_cb_t callback)
{
ASSERT(dev && dev->hw);
/* Check callback */
if (callback != NULL) {
/* register the callback */
dev->callback_tamper = callback;
/* enable RTC_IRQn */
NVIC_ClearPendingIRQ(RTC_IRQn);
NVIC_EnableIRQ(RTC_IRQn);
hri_rtcmode0_clear_interrupt_TAMPER_bit(dev->hw);
/* enable tamper interrupt */
hri_rtcmode0_set_INTEN_TAMPER_bit(dev->hw);
} else {
/* disable tamper interrupt */
hri_rtcmode0_clear_INTEN_TAMPER_bit(dev->hw);
}
return ERR_NONE;
}
/**
* \brief Registers callback for the specified callback type
*/
int32_t _calendar_register_callback(struct calendar_dev *const dev, calendar_drv_cb_t callback)
{
ASSERT(dev && dev->hw);
/* Check callback */
if (callback != NULL) {
/* register the callback */
dev->callback_alarm = callback;
/* enable RTC_IRQn */
NVIC_ClearPendingIRQ(RTC_IRQn);
NVIC_EnableIRQ(RTC_IRQn);
/* enable cmp */
hri_rtcmode0_set_INTEN_CMP0_bit(dev->hw);
} else {
/* disable cmp */
hri_rtcmode0_clear_INTEN_CMP0_bit(dev->hw);
}
return ERR_NONE;
}
/**
* \brief RTC interrupt handler
*
* \param[in] dev The pointer to calendar device struct
*/
static void _rtc_interrupt_handler(struct calendar_dev *dev)
{
/* Read and mask interrupt flag register */
uint16_t interrupt_status = hri_rtcmode0_read_INTFLAG_reg(dev->hw);
uint16_t interrupt_enabled = hri_rtcmode0_read_INTEN_reg(dev->hw);
if ((interrupt_status & interrupt_enabled) & RTC_MODE2_INTFLAG_ALARM0) {
if (dev->callback_alarm != NULL) {
dev->callback_alarm();
}
/* Clear interrupt flag */
hri_rtcmode0_clear_interrupt_CMP0_bit(dev->hw);
} else if ((interrupt_status & interrupt_enabled) & RTC_MODE2_INTFLAG_PER7) {
if (dev->callback_tick != NULL) {
dev->callback_tick();
}
/* Clear interrupt flag */
hri_rtcmode0_clear_interrupt_PER7_bit(dev->hw);
} else if ((interrupt_status & interrupt_enabled) & RTC_MODE2_INTFLAG_TAMPER) {
uint8_t reason = hri_rtc_get_TAMPID_reg(dev->hw, 0x1F);
if (dev->callback_tamper != NULL) {
dev->callback_tamper(reason);
}
hri_rtc_write_TAMPID_reg(dev->hw, reason);
/* Clear interrupt flag */
hri_rtcmode0_clear_interrupt_TAMPER_bit(dev->hw);
}
}
/**
* \brief Set calendar IRQ
*/
void _calendar_set_irq(struct calendar_dev *const dev)
{
(void)dev;
NVIC_SetPendingIRQ(RTC_IRQn);
}
/**
* \brief Rtc interrupt handler
*/
void RTC_Handler(void)
{
_rtc_interrupt_handler(_rtc_dev);
}

View File

@@ -1,52 +0,0 @@
/**
* \file
*
* \brief RTC
*
* Copyright (c) 2016-2018 Microchip Technology Inc. and its subsidiaries.
*
* \asf_license_start
*
* \page License
*
* Subject to your compliance with these terms, you may use Microchip
* software and any derivatives exclusively with Microchip products.
* It is your responsibility to comply with third party license terms applicable
* to your use of third party software (including open source software) that
* may accompany Microchip software.
*
* THIS SOFTWARE IS SUPPLIED BY MICROCHIP "AS IS". NO WARRANTIES,
* WHETHER EXPRESS, IMPLIED OR STATUTORY, APPLY TO THIS SOFTWARE,
* INCLUDING ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
* AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL MICROCHIP BE
* LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL
* LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
* SOFTWARE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
* POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT
* ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY
* RELATED TO THIS SOFTWARE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY,
* THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THIS SOFTWARE.
*
* \asf_license_stop
*/
#ifndef _HPL_RTC2_V200_H_INCLUDED
#define _HPL_RTC2_V200_H_INCLUDED
#include <hpl_timer.h>
#ifdef __cplusplus
extern "C" {
#endif
/**
* \brief Retrieve timer helper functions
*
* \return A pointer to set of timer helper functions
*/
struct _timer_hpl_interface *_rtc_get_timer(void);
#ifdef __cplusplus
}
#endif
#endif /* _HPL_RTC2_V200_H_INCLUDED */

View File

@@ -13,19 +13,8 @@
struct slcd_sync_descriptor SEGMENT_LCD_0;
struct calendar_descriptor CALENDAR_0;
struct i2c_m_sync_desc I2C_0;
void CALENDAR_0_CLOCK_init(void) {
hri_mclk_set_APBAMASK_RTC_bit(MCLK);
}
void CALENDAR_0_init(void) {
CALENDAR_0_CLOCK_init();
calendar_init(&CALENDAR_0, RTC);
}
void I2C_0_PORT_init(void) {
gpio_set_pin_pull_mode(SDA,

View File

@@ -31,43 +31,22 @@ extern "C" {
#include <hal_io.h>
#include <hal_sleep.h>
#include <hal_ext_irq.h>
#include <hal_calendar.h>
#include <hal_i2c_m_sync.h>
#include <hal_delay.h>
#include <hal_slcd_sync.h>
extern struct adc_sync_descriptor ADC_0;
extern struct calendar_descriptor CALENDAR_0;
extern struct i2c_m_sync_desc I2C_0;
extern struct pwm_descriptor PWM_0;
extern struct pwm_descriptor PWM_1;
extern struct slcd_sync_descriptor SEGMENT_LCD_0;
void ADC_0_PORT_init(void);
void ADC_0_CLOCK_init(void);
void ADC_0_init(void);
void CALENDAR_0_CLOCK_init(void);
void CALENDAR_0_init(void);
void I2C_0_CLOCK_init(void);
void I2C_0_init(void);
void I2C_0_PORT_init(void);
void delay_driver_init(void);
void PWM_0_PORT_init(void);
void PWM_0_CLOCK_init(void);
void PWM_0_init(void);
void PWM_1_PORT_init(void);
void PWM_1_CLOCK_init(void);
void PWM_1_init(void);
void EXTERNAL_IRQ_0_init(void);
void SEGMENT_LCD_0_init(void);

View File

@@ -57,7 +57,7 @@ int main(void) {
// Ideally we should check if the TAMPER or CMP0 (alarm) flags are set.
if (_watch_rtc_is_enabled()) {
// User code. Give the application a chance to restore state from backup registers.
app_wake_from_deep_sleep();
app_wake_from_backup();
// disable the tamper interrupt and clear the tamper bit
hri_rtcmode0_clear_INTEN_TAMPER_bit(RTC);
@@ -75,9 +75,9 @@ int main(void) {
bool can_sleep = app_loop();
if (can_sleep && !usb_enabled) {
app_prepare_for_sleep();
app_prepare_for_standby();
sleep(4);
app_wake_from_sleep();
app_wake_from_standby();
}
}

View File

@@ -24,18 +24,6 @@
#include "watch.h"
#include "watch_rtc.c"
#include "watch_slcd.c"
#include "watch_extint.c"
#include "watch_led.c"
#include "watch_buzzer.c"
#include "watch_adc.c"
#include "watch_gpio.c"
#include "watch_i2c.c"
#include "watch_uart.c"
#include "watch_deepsleep.c"
#include "watch_private.c"
bool battery_is_low = false;
// receives interrupts from MCLK, OSC32KCTRL, OSCCTRL, PAC, PM, SUPC and TAL, whatever that is.

View File

@@ -42,7 +42,7 @@
- @ref led - This section covers functions related to the bi-color red/green LED mounted behind the LCD.
- @ref buzzer - This section covers functions related to the piezo buzzer.
- @ref adc - This section covers functions related to the SAM L22's analog-to-digital converter, as well as
configuring and reading values from the three analog-capable pins on the 9-pin connector.
configuring and reading values from the five analog-capable pins on the 9-pin connector.
- @ref gpio - This section covers functions related to general-purpose input and output signals.
- @ref i2c - This section covers functions related to the SAM L22's built-I2C driver, including configuring
the I2C bus, putting values directly on the bus and reading data from registers on I2C devices.

View File

@@ -22,6 +22,8 @@
* SOFTWARE.
*/
#include "watch_adc.h"
void _watch_sync_adc() {
while (ADC->SYNCBUSY.reg);
}

View File

@@ -21,8 +21,12 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef _WATCH_ADC_H_INCLUDED
#define _WATCH_ADC_H_INCLUDED
////< @file watch_adc.h
#include "watch.h"
/** @addtogroup adc Analog Input
* @brief This section covers functions related to the SAM L22's analog-to-digital converter,
* as well as configuring and reading values from the five analog-capable pins on the
@@ -103,3 +107,4 @@ void watch_disable_analog_input(const uint8_t pin);
void watch_disable_adc();
/// @}
#endif

View File

@@ -21,6 +21,8 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef _WATCH_APP_H_INCLUDED
#define _WATCH_APP_H_INCLUDED
////< @file watch_app.h
/** @addtogroup app Application Framework
@@ -31,7 +33,7 @@
*
* 1. Your app_init() function is called.
* - This method should only be used to set your initial application state.
* 2. If your app is waking from BACKUP, app_wake_from_deep_sleep() is called.
* 2. If your app is waking from BACKUP, app_wake_from_backup() is called.
* - If you saved state in the RTC's backup registers, you can restore it here.
* 3. Your app_setup() method is called.
* - You may wish to enable some functionality and peripherals here.
@@ -41,11 +43,11 @@
* - Return true if your app is prepared to enter STANDBY mode.
* 5. This step differs depending on the value returned by app_loop:
* - If you returned false, execution resumes at (4).
* - If you returned true, app_prepare_for_sleep() is called; execution moves on to (6).
* 6. The microcontroller enters the STANDBY sleep mode.
* - If you returned true, app_prepare_for_standby() is called; execution moves on to (6).
* 6. The microcontroller enters STANDBY mode.
* - No user code will run, and the watch will enter a low power mode.
* - The watch will remain in this state until an interrupt wakes it.
* 7. Once woken from STANDBY, your app_wake_from_sleep() function is called.
* 7. Once woken from STANDBY, your app_wake_from_standby() function is called.
* - After this, execution resumes at (4).
*/
/// @{
@@ -55,11 +57,11 @@
*/
void app_init();
/** @brief A function you will implement to wake from deep sleep mode. The app_wake_from_deep_sleep function is only
* called if your app is waking from the ultra-low power BACKUP sleep mode. You may have chosen to store some
* state in the RTC's backup registers prior to entering this mode. You may restore that state here.
/** @brief A function you will implement to wake from BACKUP mode, which wipes the system's RAM, and with it, your
* application's state. You may have chosen to store some important application state in the RTC's backup
* registers prior to entering this mode. You may restore that state here.
*/
void app_wake_from_deep_sleep();
void app_wake_from_backup();
/** @brief A function you will implement to set up your application. The app_setup function is like setup() in Arduino.
* It is called once when the program begins. You should set pin modes and enable any peripherals you want to
@@ -72,12 +74,12 @@ void app_wake_from_deep_sleep();
void app_setup();
/** @brief A function you will implement to serve as the app's main run loop. This method will be called repeatedly,
or if you enter STANDBY sleep mode, as soon as the device wakes from sleep.
* @return You should return true if your app is prepared to enter STANDBY sleep mode. If you return false, your
* app's app_loop method will be called again immediately. Note that in STANDBY mode, the watch will consume
* only about 95 microamperes of power, whereas if you return false and keep the app awake, it will consume
* about 355 microamperes. This is the difference between months of battery life and days. As much as
* possible, you should limit the amount of time your app spends awake.
or if you enter STANDBY mode, as soon as the device wakes from sleep.
* @return You should return true if your app is prepared to enter STANDBY mode. If you return false, your app's
* app_loop method will be called again immediately. Note that in STANDBY mode, the watch will consume only
* about 95 microamperes of power, whereas if you return false and keep the app awake, it will consume about
* 355 microamperes. This is the difference between months of battery life and days. As much as possible,
* you should limit the amount of time your app spends awake.
* @note Only the RTC, the segment LCD controller and the external interrupt controller run in STANDBY mode. If you
* are using, e.g. the PWM function to set a custom LED color, you should return false here until you are
* finished with that operation. Note however that the peripherals will continue running after waking up,
@@ -86,20 +88,21 @@ void app_setup();
*/
bool app_loop();
/** @brief A function you will implement to prepare to enter STANDBY sleep mode. The app_prepare_for_sleep function is
* called before the watch goes into the STANDBY sleep mode. In STANDBY mode, most peripherals are shut down,
* and no code will run until the watch receives an interrupt (generally either the 1Hz tick or a press on one
* of the buttons).
/** @brief A function you will implement to prepare to enter STANDBY mode. The app_prepare_for_standby function is
* called after your app_loop function returns true, and just before the watch enters STANDBY mode. In this
* mode most peripherals are shut down, and no code will run until the watch receives an interrupt (generally
* either the 1Hz tick or a press on one of the buttons).
* @note If you are PWM'ing the LED or playing a sound on the buzzer, the TC/TCC peripherals that drive those operations
* will not run in STANDBY. BUT! the output pins will retain the state they had when entering standby. This means
* you could end up entering standby with an LED on and draining power, or with a DC potential across the piezo
* buzzer that could damage it if left in this state. If your app_loop does not prevent sleep during these
* activities, you should make sure to disable these outputs in app_prepare_for_sleep.
* activities, you should make sure to disable these outputs in app_prepare_for_standby.
*/
void app_prepare_for_sleep();
void app_prepare_for_standby();
/** @brief A method you will implement to configure the app after waking from STANDBY sleep mode.
/** @brief A method you will implement to configure the app after waking from STANDBY mode.
*/
void app_wake_from_sleep();
void app_wake_from_standby();
/// @}
#endif

View File

@@ -22,6 +22,8 @@
* SOFTWARE.
*/
#include "watch_buzzer.h"
inline void watch_enable_buzzer() {
if (!hri_tcc_get_CTRLA_reg(TCC0, TCC_CTRLA_ENABLE)) {
_watch_enable_tcc();

View File

@@ -21,8 +21,12 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef _WATCH_BUZZER_H_INCLUDED
#define _WATCH_BUZZER_H_INCLUDED
////< @file watch_buzzer.h
#include "watch.h"
/** @addtogroup buzzer Buzzer
* @brief This section covers functions related to the piezo buzzer embedded in the F-91W's back plate.
*/
@@ -157,3 +161,4 @@ void watch_buzzer_play_note(BuzzerNote note, uint16_t duration_ms);
extern const uint16_t NotePeriods[108];
/// @}
#endif

View File

@@ -22,24 +22,18 @@
* SOFTWARE.
*/
static void extwake_callback(uint8_t reason);
ext_irq_cb_t btn_alarm_callback;
ext_irq_cb_t a2_callback;
ext_irq_cb_t a4_callback;
#include "watch_extint.h"
static void extwake_callback(uint8_t reason) {
if (reason & RTC_TAMPID_TAMPID2) {
if (btn_alarm_callback != NULL) btn_alarm_callback();
} else if (reason & RTC_TAMPID_TAMPID1) {
if (a2_callback != NULL) a2_callback();
} else if (reason & RTC_TAMPID_TAMPID0) {
if (a4_callback != NULL) a4_callback();
}
}
// this warning only appears when you `make BOARD=OSO-SWAT-A1-02`. it's annoying,
// but i'd rather have it warn us at build-time than fail silently at run-time.
// besides, no one but me really has any of these boards anyway.
#if BTN_ALARM != GPIO(GPIO_PORTA, 2)
#warning This board revision does not support external wake on BTN_ALARM, so watch_register_extwake_callback will not work with it. Use watch_register_interrupt_callback instead.
#endif
void watch_register_extwake_callback(uint8_t pin, ext_irq_cb_t callback, bool level) {
uint32_t pinmux;
hri_rtc_tampctrl_reg_t config = hri_rtc_get_TAMPCTRL_reg(RTC, 0xFFFFFFFF);
hri_rtc_tampctrl_reg_t config = RTC->MODE2.TAMPCTRL.reg;
switch (pin) {
case A4:
@@ -77,16 +71,45 @@ void watch_register_extwake_callback(uint8_t pin, ext_irq_cb_t callback, bool le
gpio_set_pin_function(pin, pinmux);
// disable the RTC
RTC->MODE2.CTRLA.bit.ENABLE = 0;
while (RTC->MODE2.SYNCBUSY.bit.ENABLE);
// update the configuration
RTC->MODE2.TAMPCTRL.reg = config;
// re-enable the RTC
RTC->MODE2.CTRLA.bit.ENABLE = 1;
NVIC_ClearPendingIRQ(RTC_IRQn);
NVIC_EnableIRQ(RTC_IRQn);
RTC->MODE2.INTENSET.reg = RTC_MODE2_INTENSET_TAMPER;
}
void watch_disable_extwake_interrupt(uint8_t pin) {
hri_rtc_tampctrl_reg_t config = hri_rtc_get_TAMPCTRL_reg(RTC, 0xFFFFFFFF);
switch (pin) {
case A4:
a4_callback = NULL;
config &= ~(3 << RTC_TAMPCTRL_IN0ACT_Pos);
break;
case A2:
a2_callback = NULL;
config &= ~(3 << RTC_TAMPCTRL_IN1ACT_Pos);
break;
case BTN_ALARM:
btn_alarm_callback = NULL;
config &= ~(3 << RTC_TAMPCTRL_IN2ACT_Pos);
break;
default:
return;
}
if (hri_rtcmode0_get_CTRLA_ENABLE_bit(RTC)) {
hri_rtcmode0_clear_CTRLA_ENABLE_bit(RTC);
hri_rtcmode0_wait_for_sync(RTC, RTC_MODE0_SYNCBUSY_ENABLE);
}
// update the configuration
hri_rtc_write_TAMPCTRL_reg(RTC, config);
// re-enable the RTC
hri_rtcmode0_set_CTRLA_ENABLE_bit(RTC);
_extwake_register_callback(&CALENDAR_0.device, extwake_callback);
}
void watch_store_backup_data(uint32_t data, uint8_t reg) {
@@ -128,23 +151,12 @@ void _watch_disable_all_peripherals_except_slcd() {
MCLK->APBCMASK.reg &= ~MCLK_APBCMASK_SERCOM3;
}
void watch_enter_deep_sleep(char *message) {
// configure the ALARM interrupt (the callback doesn't matter)
watch_register_extwake_callback(BTN_ALARM, NULL, true);
if (message != NULL) {
watch_display_string(" ", 0);
watch_display_string(message, 0);
} else {
slcd_sync_deinit(&SEGMENT_LCD_0);
hri_mclk_clear_APBCMASK_SLCD_bit(SLCD);
}
void watch_enter_sleep_mode() {
// disable all other peripherals
_watch_disable_all_peripherals_except_slcd();
// disable tick interrupt
watch_register_tick_callback(NULL);
watch_rtc_disable_all_periodic_callbacks();
// disable brownout detector interrupt, which could inadvertently wake us up.
SUPC->INTENCLR.bit.BOD33DET = 1;
@@ -152,21 +164,29 @@ void watch_enter_deep_sleep(char *message) {
// disable all pins
_watch_disable_all_pins_except_rtc();
// turn off RAM completely.
PM->STDBYCFG.bit.BBIASHS = 3;
// enter standby (4); we basically hang out here until an interrupt forces us to reset.
// enter standby (4); we basically hang out here until an interrupt wakes us.
sleep(4);
NVIC_SystemReset();
// and we awake! re-enable the brownout detector
SUPC->INTENSET.bit.BOD33DET = 1;
// call app_setup so the app can re-enable everything we disabled.
app_setup();
// and call app_wake_from_standby (since main won't have a chance to do it)
app_wake_from_standby();
}
void watch_enter_deep_sleep_mode() {
// identical to sleep mode except we disable the LCD first.
slcd_sync_deinit(&SEGMENT_LCD_0);
hri_mclk_clear_APBCMASK_SLCD_bit(SLCD);
watch_enter_sleep_mode();
}
void watch_enter_backup_mode() {
// this will not work on the current silicon revision, but I said in the documentation that we do it.
// so let's do it!
watch_register_extwake_callback(BTN_ALARM, NULL, true);
watch_register_tick_callback(NULL);
watch_rtc_disable_all_periodic_callbacks();
_watch_disable_all_peripherals_except_slcd();
slcd_sync_deinit(&SEGMENT_LCD_0);
hri_mclk_clear_APBCMASK_SLCD_bit(SLCD);
@@ -175,3 +195,15 @@ void watch_enter_backup_mode() {
// go into backup sleep mode (5). when we exit, the reset controller will take over.
sleep(5);
}
// deprecated
void watch_enter_shallow_sleep(bool display_on) {
if (display_on) watch_enter_sleep_mode();
else watch_enter_deep_sleep_mode();
}
// deprecated
void watch_enter_deep_sleep() {
watch_register_extwake_callback(BTN_ALARM, NULL, true);
watch_enter_backup_mode();
}

View File

@@ -21,92 +21,127 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef _WATCH_DEEPSLEEP_H_INCLUDED
#define _WATCH_DEEPSLEEP_H_INCLUDED
////< @file watch_deepsleep.h
/** @addtogroup deepsleep Deep Sleep Control
* @brief This section covers functions related to preparing for and entering BACKUP mode, the
* deepest sleep mode available on the SAM L22
#include "watch.h"
// These are declared in watch_rtc.c.
extern ext_irq_cb_t btn_alarm_callback;
extern ext_irq_cb_t a2_callback;
extern ext_irq_cb_t a4_callback;
/** @addtogroup deepsleep Sleep Control
* @brief This section covers functions related to the various sleep modes available to the watch,
* including Sleep, Deep Sleep, and BACKUP mode.
* @details These terms changed meaning a bit over the course of development; if you are coming
* to this documentation after having worked with an earlier version of the library,
* these definitions should clarify the terminology. Terms in all caps are modes of the
* SAM L22; terms in Title Case are specific implementations in this library.
* - ACTIVE mode is the mode the SAM L22 is in when both the main clock and the CPU are
* running. It is the most power-hungry mode. If you ever call delay_ms to wait a beat,
* the watch will remain in ACTIVE mode while taking that delay. In addition, whenever
* your `app_loop` function returns false, the device will remain in ACTIVE mode and
* call your `app_loop` function again.
* - STANDBY mode turns off the main clock and halts the CPU. Since the PWM driver is
* run from the main clock, it also stops the buzzer and any dimming of the LEDs.
* In this mode, the watch can wake from any interrupt source. Whenever your `app_loop`
* function returns true, the watch enters STANDBY mode until the next tick or other
* interrupt. This mode uses much less power than ACTIVE mode.
* - Sleep Mode is a special case of STANDBY mode. In this mode, the watch turns off
* almost all peripherals (including the external interrupt controller), and disables
* all pins except for the external wake pins. In this mode the watch can only wake
* from the RTC alarm interrupt or an external wake pin (A2, A4 or the alarm button),
* but the display remains on and your app's state is retained. You can enter this
* mode by calling `watch_enter_sleep_mode`. It consumes an order of magnitude less
* power than STANDBY mode.
* - Deep Sleep Mode is identical to sleep mode, but it also turns off the LCD to save
* a bit more power. You can enter this mode by calling `watch_enter_deep_sleep_mode`.
* - BACKUP mode is the lowest possible power mode on the SAM L22. It turns off all pins
* and peripherals except for the RTC. It also turns off the RAM, obliterating your
* application's state. The only way to wake from this mode is by setting an external
* wake interrupt on pin A2 or pin A4, and when you do wake it will be much like a
* wake from reset. You can enter this mode by calling `watch_enter_backup_mode`.
*/
/// @{
/** @brief Registers a callback on one of the RTC's external wake pins, which can wake the device
* from deep sleep (aka BACKUP) mode.
* from Sleep, Deep Sleep and BACKUP modes (but see warning re: BACKUP mode).
* @param pin Either pin BTN_ALARM, A2, or A4. These are the three external wake pins. If the pin
* is BTN_ALARM, this function also enables an internal pull down on that pin.
* @param callback The callback to be called if this pin triggers outside of deep sleep mode. If
* this is NULL, no callback will be called even in normal mode, but the interrupt
* will still be enabled so that it can wake from deep sleep or backup mode.
* @param callback The callback to be called if this pin triggers outside of BACKUP mode. If this is
* NULL, no callback will be called even in normal modes, but the interrupt will
* still be enabled so that it can wake the device.
* @param level The level you wish to scan for: true for rising, false for falling. Note that you
* cannot scan for both rising and falling edges like you can with the external interrupt
* pins; with the external wake interrupt, you can only get one or the other.
* @note When in normal or STANDBY mode, this will function much like a standard external interrupt
* situation: these pins will wake from standby, and your callback will be called. However,
* if the device enters deep sleep and one of these pins wakes the device, your callback
* WILL NOT be called, as the device is basically waking from reset at that point.
* @note When in ACTIVE, STANDBY and Sleep / Deep sleep modes, this will function much like a standard
* external interrupt situation: these pins will wake the device, and your callback will be
* called. However, if the device enters BACKUP mode and one of these pins wakes the device, your
* callback WILL NOT be called, as the device is basically waking from reset at that point.
* @warning As of the current SAM L22 silicon revision (rev B), the BTN_ALARM pin cannot wake the
* device from BACKUP mode. You can still use this function to register a BTN_ALARM interrupt
* in normal or deep sleep mode, but to wake from BACKUP, you will need to use pin A2 or A4.
*/
void watch_register_extwake_callback(uint8_t pin, ext_irq_cb_t callback, bool level);
/** @brief Unregisters the interrupt on one of the EXTWAKE pins. This will prevent a value change on
* one of these pins from waking the device from deep sleep or BACKUP modes.
/** @brief Unregisters the RTC interrupt on one of the EXTWAKE pins. This will prevent a value change on
* one of these pins from waking the device.
* @param pin Either pin BTN_ALARM, A2, or A4. If the pin is BTN_ALARM, this function DOES NOT disable
* the internal pull down on that pin.
*/
void watch_disable_extwake_interrupt(uint8_t pin, ext_irq_cb_t callback, bool level);
void watch_disable_extwake_interrupt(uint8_t pin);
/** @brief Stores data in one of the RTC's backup registers, which retain their data in the deep sleep
and backup modes.
/** @brief Stores data in one of the RTC's backup registers, which retain their data in BACKUP mode.
* @param data An unsigned 32 bit integer with the data you wish to store.
* @param reg A register from 0-7.
*/
void watch_store_backup_data(uint32_t data, uint8_t reg);
/** @brief Gets 32 bits of data from the RTC's backup register.
/** @brief Gets 32 bits of data from the RTC's BACKUP register.
* @param reg A register from 0-7.
* @return An unsigned 32 bit integer with the from the backup register.
*/
uint32_t watch_get_backup_data(uint8_t reg);
/** @brief Enters a deep sleep mode by disabling RAM retention and all peripherals except the RTC and
* (optionally) the LCD. You can wake from this mode by pressing the ALARM button.
* @param message Either NULL, or a string representing a message to display while in deep sleep mode. The
* message will be displayed at position 0, so you should pad out the beginning of the string
* with spaces if you wish for the message to appear on line 2, i.e. " SLEEP". If this
* parameter is NULL, the screen will be blanked, and this function will disable the SLCD
* peripheral for additional power savings. (also note that while the message will replace any
* text on the display, this function will not clear any indicators you have set. This is by
* design, in case you wish to leave an indicator lit in sleep mode.)
* @details This deep sleep mode is not the lowest power mode available (see watch_enter_backup_mode), but
* it has the benefit of being able to wake with a press of the ALARM button, and provides an option
* for displaying a message to the user when asleep. The only way to wake from this mode is by
* pressing the ALARM button, or receiving an interrupt on pin A2 or A4 of the nine-pin connector.
* (An alarm interrupt would also work, but this has not yet been implemented.) This function enables
* the ALARM button interrupt for you, but if you wish to wake from the A2 or A4 RTC interrupt, you
* must configure them by calling watch_register_extwake_callback. Note however that your callback
* will not be called in this case.
* Power consumption in deep sleep mode varies a bit with the battery voltage and the temperature,
* but at 3 V and ~25° C you can eoughly estimate:
* * ~12µA current draw with the LCD controller on (message != NULL)
* * ~6.5µA current draw with the LCD controller off (message == NULL)
* @note With RAM powered off, your application state will be cleared as soon as you call this function, and
* when the user wakes up the watch, your app will effectively be waking from reset. Your app's @ref
* app_wake_from_deep_sleep function will be called to give your app a chance to restore any state that
* you stored using @ref watch_store_backup_data.
/** @brief enters Sleep Mode by disabling all pins and peripherals except the RTC and the LCD.
* @details This sleep mode is not the lowest power mode available, but it has the benefit of allowing you
* to display a message to the user while asleep. You can also set an alarm interrupt to wake at a
* configfurable interval (every minute, hour or day) to update the display. You can wake from this
* mode by pressing the ALARM button, if you registered an extwake callback on the ALARM button.
* Also note that when your app wakes from this sleep mode, your app_setup method will be called
* again, since this function will have disabled things you set up there.
*
* Note that to wake from either the ALARM button, the A2 interrupt or the A4 interrupt, you
* must first configure this by calling watch_register_extwake_callback.
*
* You can estimate the power consumption of this mode to be on the order of 30 microwatts
* (about 10 µA at 3 V).
*/
void watch_enter_deep_sleep(char *message);
void watch_enter_sleep_mode();
/** @brief enters Deep Sleep Mode by disabling all pins and peripherals except the RTC.
* @details Short of BACKUP mode, this is the lowest power mode you can enter while retaining your
* application state (and the ability to wake with the alarm button). Just note that the display
* will be completely off, so you should document to the user of your application that they will
* need to press the alarm button to wake the device, or use a sensor board with support for
* an external wake pin.
*
* All notes from watch_enter_sleep_mode apply here, except for power consumption. You can estimate
* the power consumption of this mode to be on the order of 12 microwatts (about 4µA at 3 V).
*/
void watch_enter_deep_sleep_mode();
/** @brief Enters the SAM L22's lowest-power mode, BACKUP.
* @details This function does some housekeeping before entering BACKUP mode. It first disables all
* peripherals except for the RTC, and disables the tick interrupt (since that would wake
* us up from deep sleep). It also sets an external wake source on the ALARM button, if one
* was not already set. If you wish to wake from another source, such as one of the external
* wake interrupt pins on the 9-pin connector, set that up prior to calling this function.
* @details This function does some housekeeping before entering BACKUP mode. It first disables all pins
* and peripherals except for the RTC, and disables the tick interrupt (since that would wake
* us up from BACKUP mode). Once again, if you wish to wake from the A2 or the A4 interrupt,
* you must first configure this by calling watch_register_extwake_callback.
* @note If you have a callback set for an external wake interrupt, it will be called if triggered while
* in ACTIVE, IDLE or STANDBY modes, but it *will not be called* when waking from BACKUP.
* Waking from backup is effectively like waking from reset, except that your @ref
* app_wake_from_deep_sleep function will be called.
* in ACTIVE, STANDBY, Sleep and Deep Sleep modes, but it *will not be called* when waking from
* BACKUP mode. Waking from backup is effectively like waking from reset, except that your
* @ref app_wake_from_backup function will be called.
* @warning On current revisions of the SAM L22 silicon, the ALARM_BTN pin (PA02 RTC/IN2) cannot wake
* the device from deep sleep mode. There is an errata note (Reference: 15010) that says that
* due to a silicon bug, RTC/IN2 is not functional in BACKUP. As a result, you should not call
@@ -114,4 +149,11 @@ void watch_enter_deep_sleep(char *message);
* on pin A2 or A4 (i.e. an accelerometer with an interrupt pin).
*/
void watch_enter_backup_mode();
__attribute__((deprecated("Use watch_enter_sleep_mode or watch_enter_deep_sleep_mode instead")))
void watch_enter_shallow_sleep(bool display_on);
__attribute__((deprecated("Use watch_enter_backup_mode instead")))
void watch_enter_deep_sleep();
/// @}
#endif

View File

@@ -22,6 +22,8 @@
* SOFTWARE.
*/
#include "watch_extint.h"
void watch_enable_external_interrupts() {
// Configure EIC to use GCLK3 (the 32.768 kHz crystal)
hri_gclk_write_PCHCTRL_reg(GCLK, EIC_GCLK_ID, GCLK_PCHCTRL_GEN_GCLK3_Val | (1 << GCLK_PCHCTRL_CHEN_Pos));
@@ -63,18 +65,14 @@ void watch_register_interrupt_callback(const uint8_t pin, ext_irq_cb_t callback,
sense_pos = 4 * (WATCH_A4_EIC_CHANNEL % 8);
break;
case BTN_ALARM:
// for the buttons, we need an internal pull-down.
gpio_set_pin_pull_mode(pin, GPIO_PULL_DOWN);
config_index = (WATCH_BTN_ALARM_EIC_CHANNEL > 7) ? 1 : 0;
sense_pos = 4 * (WATCH_BTN_ALARM_EIC_CHANNEL % 8);
break;
case BTN_LIGHT:
gpio_set_pin_pull_mode(pin, GPIO_PULL_DOWN);
config_index = (WATCH_BTN_LIGHT_EIC_CHANNEL > 7) ? 1 : 0;
sense_pos = 4 * (WATCH_BTN_LIGHT_EIC_CHANNEL % 8);
break;
case BTN_MODE:
gpio_set_pin_pull_mode(pin, GPIO_PULL_DOWN);
config_index = (WATCH_BTN_MODE_EIC_CHANNEL > 7) ? 1 : 0;
sense_pos = 4 * (WATCH_BTN_MODE_EIC_CHANNEL % 8);
break;
@@ -83,7 +81,6 @@ void watch_register_interrupt_callback(const uint8_t pin, ext_irq_cb_t callback,
}
gpio_set_pin_direction(pin, GPIO_DIRECTION_IN);
gpio_set_pin_function(pin, GPIO_PIN_FUNCTION_A);
// EIC configuration register is enable-protected, so we have to disable it first...
if (hri_eic_get_CTRLA_reg(EIC, EIC_CTRLA_ENABLE)) {
@@ -96,6 +93,9 @@ void watch_register_interrupt_callback(const uint8_t pin, ext_irq_cb_t callback,
config &= ~(7 << sense_pos);
config |= trigger << (sense_pos);
hri_eic_write_CONFIG_reg(EIC, config_index, config);
// ...set the pin mode...
gpio_set_pin_function(pin, GPIO_PIN_FUNCTION_A);
if (pin == BTN_ALARM || pin == BTN_LIGHT || pin == BTN_MODE) gpio_set_pin_pull_mode(pin, GPIO_PULL_DOWN);
// ...and re-enable the EIC
hri_eic_set_CTRLA_ENABLE_bit(EIC);

View File

@@ -21,8 +21,11 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef _WATCH_EXTINT_H_INCLUDED
#define _WATCH_EXTINT_H_INCLUDED
////< @file watch_extint.h
#include "watch.h"
#include "hal_ext_irq.h"
/** @addtogroup buttons Buttons & External Interrupts
@@ -78,3 +81,4 @@ void watch_register_button_callback(const uint8_t pin, ext_irq_cb_t callback);
__attribute__((deprecated("Use watch_enable_external_interrupts instead")))
void watch_enable_buttons();
/// @}
#endif

View File

@@ -22,6 +22,8 @@
* SOFTWARE.
*/
#include "watch_gpio.h"
void watch_enable_digital_input(const uint8_t pin) {
gpio_set_pin_direction(pin, GPIO_DIRECTION_IN);
gpio_set_pin_function(pin, GPIO_PIN_FUNCTION_OFF);

View File

@@ -21,8 +21,12 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef _WATCH_GPIO_H_INCLUDED
#define _WATCH_GPIO_H_INCLUDED
////< @file watch_gpio.h
#include "watch.h"
/** @addtogroup gpio Digital Input and Output
* @brief This section covers functions related to general-purpose input and output signals.
*/
@@ -69,3 +73,4 @@ void watch_disable_digital_output(const uint8_t pin);
*/
void watch_set_pin_level(const uint8_t pin, const bool level);
/// @}
#endif

View File

@@ -22,7 +22,9 @@
* SOFTWARE.
*/
struct io_descriptor *I2C_0_io;
#include "watch_i2c.h"
struct io_descriptor *I2C_0_io;
void watch_enable_i2c() {
I2C_0_init();

View File

@@ -21,8 +21,12 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef _WATCH_I2C_H_INCLUDED
#define _WATCH_I2C_H_INCLUDED
////< @file watch_i2c.h
#include "watch.h"
/** @addtogroup i2c I2C Controller Driver
* @brief This section covers functions related to the SAM L22's built-I2C driver, including
* configuring the I2C bus, putting values directly on the bus and reading data from
@@ -99,3 +103,4 @@ uint32_t watch_i2c_read24(int16_t addr, uint8_t reg);
*/
uint32_t watch_i2c_read32(int16_t addr, uint8_t reg);
/// @}
#endif

View File

@@ -22,6 +22,8 @@
* SOFTWARE.
*/
#include "watch_led.h"
void watch_enable_leds() {
if (!hri_tcc_get_CTRLA_reg(TCC0, TCC_CTRLA_ENABLE)) {
_watch_enable_tcc();

View File

@@ -21,8 +21,12 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef _WATCH_LED_H_INCLUDED
#define _WATCH_LED_H_INCLUDED
////< @file watch_led.h
#include "watch.h"
/** @addtogroup led LED Control
* @brief This section covers functions related to the bi-color red/green LED mounted behind the LCD.
* @details The SAM L22 is an exceedingly power efficient chip, whereas the LED's are relatively power-
@@ -86,3 +90,4 @@ void watch_enable_led(bool unused);
__attribute__((deprecated("Use watch_disable_leds instead")))
void watch_disable_led(bool unused);
/// @}
#endif

View File

@@ -22,6 +22,7 @@
* SOFTWARE.
*/
#include "watch_private.h"
#include "tusb.h"
void _watch_init() {
@@ -56,8 +57,7 @@ void _watch_init() {
SUPC->BOD33.bit.ENABLE = 1;
// External wake depends on RTC; calendar is a required module.
CALENDAR_0_init();
calendar_enable(&CALENDAR_0);
_watch_rtc_init();
// set up state
btn_alarm_callback = NULL;

View File

@@ -21,10 +21,17 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef _WATCH_PRIVATE_H_INCLUDED
#define _WATCH_PRIVATE_H_INCLUDED
#include "watch.h"
/// Called by main.c while setting up the app. You should not call this from your app.
void _watch_init();
/// Initializes the real-time clock peripheral.
void _watch_rtc_init();
/// Called by buzzer and LED setup functions. You should not call this from your app.
void _watch_enable_tcc();
@@ -33,3 +40,4 @@ void _watch_disable_tcc();
/// Called by main.c if plugged in to USB. You should not call this from your app.
void _watch_enable_usb();
#endif

View File

@@ -22,19 +22,174 @@
* SOFTWARE.
*/
bool _watch_rtc_is_enabled() {
return RTC->MODE0.CTRLA.bit.ENABLE;
#include "watch_rtc.h"
ext_irq_cb_t tick_callbacks[8];
ext_irq_cb_t alarm_callback;
ext_irq_cb_t btn_alarm_callback;
ext_irq_cb_t a2_callback;
ext_irq_cb_t a4_callback;
bool _watch_rtc_is_enabled() {
return RTC->MODE2.CTRLA.bit.ENABLE;
}
void _sync_rtc() {
while (RTC->MODE2.SYNCBUSY.reg);
}
void _watch_rtc_init() {
MCLK->APBAMASK.reg |= MCLK_APBAMASK_RTC;
if (_watch_rtc_is_enabled()) return; // don't reset the RTC if it's already set up.
RTC->MODE2.CTRLA.bit.ENABLE = 0;
_sync_rtc();
RTC->MODE2.CTRLA.bit.SWRST = 1;
_sync_rtc();
RTC->MODE2.CTRLA.bit.MODE = RTC_MODE2_CTRLA_MODE_CLOCK_Val;
RTC->MODE2.CTRLA.bit.PRESCALER = RTC_MODE2_CTRLA_PRESCALER_DIV1024_Val;
RTC->MODE2.CTRLA.bit.CLOCKSYNC = 1;
RTC->MODE2.CTRLA.bit.ENABLE = 1;
_sync_rtc();
}
void watch_rtc_set_date_time(watch_date_time date_time) {
RTC->MODE2.CLOCK.reg = date_time.reg;
_sync_rtc();
}
watch_date_time watch_rtc_get_date_time() {
watch_date_time retval;
_sync_rtc();
retval.reg = RTC->MODE2.CLOCK.reg;
return retval;
}
void watch_rtc_register_tick_callback(ext_irq_cb_t callback) {
watch_rtc_register_periodic_callback(callback, 1);
}
void watch_rtc_disable_tick_callback() {
watch_rtc_disable_periodic_callback(1);
}
void watch_rtc_register_periodic_callback(ext_irq_cb_t callback, uint8_t frequency) {
// we told them, it has to be a power of 2.
if (__builtin_popcount(frequency) != 1) return;
// this left-justifies the period in a 32-bit integer.
uint32_t tmp = frequency << 24;
// now we can count the leading zeroes to get the value we need.
// 0x01 (1 Hz) will have 7 leading zeros for PER7. 0xF0 (128 Hz) will have no leading zeroes for PER0.
uint8_t per_n = __builtin_clz(tmp);
// this also maps nicely to an index for our list of tick callbacks.
tick_callbacks[per_n] = callback;
NVIC_ClearPendingIRQ(RTC_IRQn);
NVIC_EnableIRQ(RTC_IRQn);
RTC->MODE2.INTENSET.reg = 1 << per_n;
}
void watch_rtc_disable_periodic_callback(uint8_t frequency) {
if (__builtin_popcount(frequency) != 1) return;
uint8_t per_n = __builtin_clz(frequency << 24);
RTC->MODE2.INTENCLR.reg = 1 << per_n;
}
void watch_rtc_disable_all_periodic_callbacks() {
RTC->MODE2.INTENCLR.reg = 0xFF;
}
void watch_rtc_register_alarm_callback(ext_irq_cb_t callback, watch_date_time alarm_time, watch_rtc_alarm_match mask) {
RTC->MODE2.Mode2Alarm[0].ALARM.reg = alarm_time.reg;
RTC->MODE2.Mode2Alarm[0].MASK.reg = mask;
RTC->MODE2.INTENSET.reg = RTC_MODE2_INTENSET_ALARM0;
alarm_callback = callback;
NVIC_ClearPendingIRQ(RTC_IRQn);
NVIC_EnableIRQ(RTC_IRQn);
RTC->MODE2.INTENSET.reg = RTC_MODE2_INTENSET_ALARM0;
}
void watch_rtc_disable_alarm_callback() {
RTC->MODE2.INTENCLR.reg = RTC_MODE2_INTENCLR_ALARM0;
}
void RTC_Handler(void) {
uint16_t interrupt_status = RTC->MODE2.INTFLAG.reg;
uint16_t interrupt_enabled = RTC->MODE2.INTENSET.reg;
if ((interrupt_status & interrupt_enabled) & RTC_MODE2_INTFLAG_PER_Msk) {
// handle the tick callback first, it's what we do the most.
// start from PER7, the 1 Hz tick.
for(int8_t i = 7; i >= 0; i--) {
if ((interrupt_status & interrupt_enabled) & (1 << i)) {
if (tick_callbacks[i] != NULL) {
tick_callbacks[i]();
}
RTC->MODE2.INTFLAG.reg = 1 << i;
break;
}
}
} else if ((interrupt_status & interrupt_enabled) & RTC_MODE2_INTFLAG_TAMPER) {
// handle the extwake interrupts next.
uint8_t reason = RTC->MODE2.TAMPID.reg;
if (reason & RTC_TAMPID_TAMPID2) {
if (btn_alarm_callback != NULL) btn_alarm_callback();
} else if (reason & RTC_TAMPID_TAMPID1) {
if (a2_callback != NULL) a2_callback();
} else if (reason & RTC_TAMPID_TAMPID0) {
if (a4_callback != NULL) a4_callback();
}
RTC->MODE2.TAMPID.reg = reason;
RTC->MODE2.INTFLAG.reg = RTC_MODE2_INTFLAG_TAMPER;
} else if ((interrupt_status & interrupt_enabled) & RTC_MODE2_INTFLAG_ALARM0) {
// finally handle the alarm.
if (alarm_callback != NULL) {
alarm_callback();
}
RTC->MODE2.INTFLAG.reg = RTC_MODE2_INTFLAG_ALARM0;
}
}
///////////////////////
// Deprecated functions
void watch_set_date_time(struct calendar_date_time date_time) {
calendar_set_date(&CALENDAR_0, &date_time.date);
calendar_set_time(&CALENDAR_0, &date_time.time);
RTC_MODE2_CLOCK_Type val;
val.bit.SECOND = date_time.time.sec;
val.bit.MINUTE = date_time.time.min;
val.bit.HOUR = date_time.time.hour;
val.bit.DAY = date_time.date.day;
val.bit.MONTH = date_time.date.month;
val.bit.YEAR = (uint8_t)(date_time.date.year - WATCH_RTC_REFERENCE_YEAR);
RTC->MODE2.CLOCK.reg = val.reg;
_sync_rtc();
}
void watch_get_date_time(struct calendar_date_time *date_time) {
calendar_get_date_time(&CALENDAR_0, date_time);
_sync_rtc();
RTC_MODE2_CLOCK_Type val = RTC->MODE2.CLOCK;
date_time->time.sec = val.bit.SECOND;
date_time->time.min = val.bit.MINUTE;
date_time->time.hour = val.bit.HOUR;
date_time->date.day = val.bit.DAY;
date_time->date.month = val.bit.MONTH;
date_time->date.year = val.bit.YEAR + WATCH_RTC_REFERENCE_YEAR;
}
void watch_register_tick_callback(ext_irq_cb_t callback) {
_prescaler_register_callback(&CALENDAR_0.device, callback);
tick_callbacks[7] = callback;
NVIC_ClearPendingIRQ(RTC_IRQn);
NVIC_EnableIRQ(RTC_IRQn);
RTC->MODE2.INTENSET.reg = RTC_MODE2_INTENSET_PER7;
}

View File

@@ -21,8 +21,11 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef _WATCH_RTC_H_INCLUDED
#define _WATCH_RTC_H_INCLUDED
////< @file watch_rtc.h
#include "watch.h"
#include "hpl_calendar.h"
/** @addtogroup rtc Real-Time Clock
@@ -35,24 +38,127 @@
* to wake from STANDBY mode.
*/
/// @{
#define WATCH_RTC_REFERENCE_YEAR (2020)
typedef union {
struct {
uint32_t second : 6; // 0-59
uint32_t minute : 6; // 0-59
uint32_t hour : 5; // 0-23
uint32_t day : 5; // 1-31
uint32_t month : 4; // 1-12
uint32_t year : 6; // 0-63 (representing 2020-2083)
} unit;
uint32_t reg; // the bit-packed value as expected by the RTC peripheral's CLOCK register.
} watch_date_time;
typedef enum watch_rtc_alarm_match {
ALARM_MATCH_DISABLED = 0,
ALARM_MATCH_SS,
ALARM_MATCH_MMSS,
ALARM_MATCH_HHMMSS,
} watch_rtc_alarm_match;
/** @brief Called by main.c to check if the RTC is enabled.
* You may call this function, but outside of app_init, it sbould always return true.
* You may call this function, but outside of app_init, it should always return true.
*/
bool _watch_rtc_is_enabled();
/** @brief Sets the date and time.
* @param date_time The date and time you wish to set, with a year value from 0-63 representing 2020-2083.
* @note The SAM L22 stores the year as six bits representing a value from 0 to 63. It treats this as a year
* offset from a reference year, which must be a leap year. Since 2020 was a leap year, and it allows
* useful dates through 2083, it is assumed that watch apps will use 2020 as the reference year; thus
* 1 means 2021, 2 means 2022, etc. **You will be responsible for handling this offset in your code**,
* if the calendar year is needed for timestamp calculation logic or display purposes.
*/
void watch_rtc_set_date_time(watch_date_time date_time);
/** @brief Returns the date and time.
* @return A watch_date_time with the current date and time, with a year value from 0-63 representing 2020-2083.
* @see watch_rtc_set_date_time for notes about how the year is stored.
*/
watch_date_time watch_rtc_get_date_time();
/** @brief Registers an alarm callback that will be called when the RTC time matches the target time, as masked
* by the provided mask.
* @param callback The function you wish to have called when the alarm fires. If this value is NULL, the alarm
* interrupt will still be enabled, but no callback function will be called.
* @param alarm_time The time that you wish to match. The date is currently ignored.
* @param mask One of the values in watch_rtc_alarm_match indicating which values to check.
* @details The alarm interrupt is a versatile tool for scheduling events in the future, especially since it can
* wake the device from all sleep modes. The key to its versatility is the mask parameter.
* Suppose we set an alarm for midnight, 00:00:00.
* * if mask is ALARM_MATCH_SS, the alarm will fire every minute when the clock ticks to seconds == 0.
* * with ALARM_MATCH_MMSS, the alarm will once an hour, at the top of each hour.
* * with ALARM_MATCH_HHMMSS, the alarm will fire at midnight every day.
* In theory the SAM L22's alarm function can match on days, months and even years, but I have not had
* success with this yet; as such, I am omitting these options for now.
*/
void watch_rtc_register_alarm_callback(ext_irq_cb_t callback, watch_date_time alarm_time, watch_rtc_alarm_match mask);
/** @brief Disables the alarm callback.
*/
void watch_rtc_disable_alarm_callback();
/** @brief Registers a "tick" callback that will be called once per second.
* @param callback The function you wish to have called when the clock ticks. If you pass in NULL, the tick
* interrupt will still be enabled, but no callback function will be called.
* @note this is equivalent to calling watch_rtc_register_periodic_callback with a frequency of 1. It can be
* disabled with either watch_rtc_disable_tick_callback() or watch_rtc_disable_periodic_callback(1),
* and will also be disabled when watch_rtc_disable_all_periodic_callbacks is called.
*/
void watch_rtc_register_tick_callback(ext_irq_cb_t callback);
/** @brief Disables the tick callback for the given period.
*/
void watch_rtc_disable_tick_callback();
/** @brief Registers a callback that will be called at a configurable period.
* @param callback The function you wish to have called at the specified period. If you pass in NULL, the periodic
* interrupt will still be enabled, but no callback function will be called.
* @param frequency The frequency of the tick in Hz. **Must be a power of 2**, from 1 to 128 inclusive.
* @note A 1 Hz tick (@see watch_rtc_register_tick_callback) is suitable for most applications, in that it gives you a
* chance to update the display once a second — an ideal update rate for a watch! If however you are displaying
* a value (such as an accelerometer output) that updates more frequently than once per second, you may want to
* tick at 16 or 32 Hz to update the screen more quickly. Just remember that the more frequent the tick, the more
* power your app will consume. Ideally you should enable the fast tick only when the user requires it (i.e. in
* response to an input event), and move back to the slow tick after some time.
*
* Also note that the RTC peripheral does not have sub-second resolution, so even if you set a 2 or 4 Hz interval,
* the system will not have any way of telling you where you are within a given second; watch_rtc_get_date_time
* will return the exact same timestamp until the second ticks over.
*/
void watch_rtc_register_periodic_callback(ext_irq_cb_t callback, uint8_t frequency);
/** @brief Disables the tick callback for the given period.
* @param frequency The frequency of the tick you wish to disable, in Hz. **Must be a power of 2**, from 1 to 128.
*/
void watch_rtc_disable_periodic_callback(uint8_t frequency);
/** @brief Disables all periodic callbacks, including the once-per-second tick callback.
*/
void watch_rtc_disable_all_periodic_callbacks();
/** @brief Sets the system date and time.
* @param date_time A struct representing the date and time you wish to set.
*/
__attribute__((deprecated("Use watch_rtc_set_date_time function instead")))
void watch_set_date_time(struct calendar_date_time date_time);
/** @brief Returns the system date and time in the provided struct.
* @param date_time A pointer to a calendar_date_time struct.
It will be populated with the correct date and time on return.
* @param date_time A pointer to a calendar_date_time struct. It will have with the correct date and time on return.
*/
__attribute__((deprecated("Use the watch_rtc_get_date_time function instead")))
void watch_get_date_time(struct calendar_date_time *date_time);
/** @brief Registers a "tick" callback that will be called once per second.
* @param callback The function you wish to have called when the clock ticks.
* @param callback The function you wish to have called when the clock ticks. If you pass in NULL, the tick
* interrupt will still be enabled, but no callback function will be called.
*/
__attribute__((deprecated("Use the watch_rtc_register_tick_callback function instead")))
void watch_register_tick_callback(ext_irq_cb_t callback);
/// @}
#endif

View File

@@ -22,6 +22,9 @@
* SOFTWARE.
*/
#include "watch_slcd.h"
#include "hpl_slcd_config.h"
//////////////////////////////////////////////////////////////////////////////////////////
// Segmented Display
@@ -112,8 +115,8 @@ static const uint8_t Character_Set[] =
0b01010000, // r
0b01101101, // s
0b01111000, // t
0b01100010, // u (appears as superscript to work in more positions)
0b01100010, // v (appears as superscript to work in more positions)
0b01100010, // u (appears in (u)pper half to work in more positions)
0b00011100, // v (looks like u but in the lower half)
0b10111110, // w (only works in position 0)
0b01111110, // x
0b01101110, // y
@@ -147,6 +150,10 @@ static const uint32_t IndicatorSegments[6] = {
SLCD_SEGID(1, 10), // WATCH_INDICATOR_LAP
};
void _sync_slcd() {
while (SLCD->SYNCBUSY.reg);
}
void watch_enable_display() {
SEGMENT_LCD_0_init();
slcd_sync_enable(&SEGMENT_LCD_0);
@@ -160,9 +167,23 @@ inline void watch_clear_pixel(uint8_t com, uint8_t seg) {
slcd_sync_seg_off(&SEGMENT_LCD_0, SLCD_SEGID(com, seg));
}
void watch_clear_display() {
SLCD->SDATAL0.reg = 0;
SLCD->SDATAL1.reg = 0;
SLCD->SDATAL2.reg = 0;
}
void watch_display_character(uint8_t character, uint8_t position) {
// handle lowercase 7 if needed
if (character == '7' && (position == 4 || position == 6)) character = '&';
// special cases for positions 4 and 6
if (position == 4 || position == 6) {
if (character == '7') character = '&'; // "lowercase" 7
if (character == 'v') character = 'u'; // bottom segment duplicated, so show in top half
if (character == 'J') character = 'j'; // same
} else if (position != 4 && position != 6) {
if (character == 'u') character = 'v'; // we can use the bottom segment; move to lower half
if (character == 'j') character = 'J'; // same but just display a normal J
}
if (position == 0) slcd_sync_seg_off(&SEGMENT_LCD_0, SLCD_SEGID(0, 15)); // clear funky ninth segment
uint64_t segmap = Segment_Map[position];
uint64_t segdata = Character_Set[character - 0x20];
@@ -181,7 +202,9 @@ void watch_display_character(uint8_t character, uint8_t position) {
segmap = segmap >> 8;
segdata = segdata >> 1;
}
if (character == 'T' && position == 1) slcd_sync_seg_on(&SEGMENT_LCD_0, SLCD_SEGID(1, 12));
if (character == 'T' && position == 1) slcd_sync_seg_on(&SEGMENT_LCD_0, SLCD_SEGID(1, 12)); // add descender
else if (position == 0 && (character == 'B' || character == 'D')) slcd_sync_seg_on(&SEGMENT_LCD_0, SLCD_SEGID(0, 15)); // add funky ninth segment
else if (position == 0 && (character == 'B' || character == 'D' || character == '@')) slcd_sync_seg_on(&SEGMENT_LCD_0, SLCD_SEGID(0, 15)); // add funky ninth segment
}
void watch_display_string(char *string, uint8_t position) {
@@ -216,3 +239,51 @@ void watch_clear_all_indicators() {
slcd_sync_seg_off(&SEGMENT_LCD_0, SLCD_SEGID(0, 16));
slcd_sync_seg_off(&SEGMENT_LCD_0, SLCD_SEGID(1, 10));
}
void watch_start_character_blink(char character, uint32_t duration) {
SLCD->CTRLD.bit.FC0EN = 0;
_sync_slcd();
if (duration <= SLCD_FC_BYPASS_MAX_MS) {
SLCD->FC0.reg = SLCD_FC0_PB | ((duration / (1000 / SLCD_FRAME_FREQUENCY)) - 1);
} else {
SLCD->FC0.reg = (((duration / (1000 / SLCD_FRAME_FREQUENCY)) / 8 - 1));
}
SLCD->CTRLD.bit.FC0EN = 1;
watch_display_character(character, 7);
watch_clear_pixel(2, 10); // clear segment B of position 7 since it can't blink
SLCD->CTRLD.bit.BLINK = 0;
SLCD->CTRLA.bit.ENABLE = 0;
_sync_slcd();
SLCD->BCFG.bit.BSS0 = 0x07;
SLCD->BCFG.bit.BSS1 = 0x07;
SLCD->CTRLD.bit.BLINK = 1;
_sync_slcd();
SLCD->CTRLA.bit.ENABLE = 1;
_sync_slcd();
}
void watch_stop_blink() {
SLCD->CTRLD.bit.FC0EN = 0;
SLCD->CTRLD.bit.BLINK = 0;
}
void watch_start_tick_animation(uint32_t duration) {
watch_display_character(' ', 8);
const uint32_t segs[] = { SLCD_SEGID(0, 2)};
slcd_sync_start_animation(&SEGMENT_LCD_0, segs, 1, duration);
}
bool watch_tick_animation_is_running() {
return hri_slcd_get_CTRLD_CSREN_bit(SLCD);
}
void watch_stop_tick_animation() {
const uint32_t segs[] = { SLCD_SEGID(0, 2)};
slcd_sync_stop_animation(&SEGMENT_LCD_0, segs, 1);
watch_display_character(' ', 8);
}

View File

@@ -21,8 +21,12 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef _WATCH_SLCD_H_INCLUDED
#define _WATCH_SLCD_H_INCLUDED
////< @file watch_slcd.h
#include "watch.h"
/** @addtogroup slcd Segment LCD Display
* @brief This section covers functions related to the Segment LCD display driver, which is responsible
* for displaying strings of characters and indicators on the main watch display.
@@ -65,6 +69,10 @@ void watch_set_pixel(uint8_t com, uint8_t seg);
*/
void watch_clear_pixel(uint8_t com, uint8_t seg);
/** @brief Clears all segments of the display, including incicators and the colon.
*/
void watch_clear_display();
/** @brief Displays a string at the given position, starting from the top left. There are ten digits.
A space in any position will clear that digit.
* @param string A null-terminated string.
@@ -99,4 +107,45 @@ void watch_clear_indicator(WatchIndicatorSegment indicator);
*/
void watch_clear_all_indicators();
/** @brief Blinks a single character in position 7. Does not affect other positions.
* @details Six of the seven segments in position 7 (and only position 7) are capable of autonomous
* blinking. This blinking does not require any CPU resources, and will continue even in
* STANDBY and Sleep mode (but not Deep Sleep mode, since that mode turns off the LCD).
* @param character The character you wish to blink.
* @param duration The duration of the on/off cycle in milliseconds, from 50 to ~4250 ms.
* @note Segment B of position 7 cannot blink autonomously, so not all characters will work well.
* Supported characters for blinking:
* * Punctuation: underscore, apostrophe, comma, hyphen, equals sign, tilde (top segment only)
* * Numbers: 5, 6, ampersand (lowercase 7)
* * Letters: b, C, c, E, F, h, i, L, l, n, o, S, t
*/
void watch_start_character_blink(char character, uint32_t duration);
/** @brief Stops and clears all blinking segments.
* @details This will stop all blinking in position 7, and clear all segments in that digit.
*/
void watch_stop_blink();
/** @brief Begins a two-segment "tick-tock" animation in position 8.
* @details Six of the seven segments in position 8 (and only position 8) are capable of autonomous
* animation. This animation is very basic, and consists of moving a bit pattern forward
* or backward in a shift register whose positions map to fixed segments on the LCD. Given
* this constraint, an animation across all six segments does not make sense; so the watch
* library offers only a simple "tick/tock" in segments D and E. This animation does not
* require any CPU resources, and will continue even in STANDBY and Sleep mode (but not Deep
* Sleep mode, since that mode turns off the LCD).
* @param duration The duration of each frame in ms. 500 milliseconds produces a classic tick/tock.
*/
void watch_start_tick_animation(uint32_t duration);
/** @brief Checks if the tick animation is currently running.
* @return true if the animation is running; false otherwise.
*/
bool watch_tick_animation_is_running();
/** @brief Stops the tick/tock animation and clears all animating segments.
* @details This will stop the animation and clear all segments in position 8.
*/
void watch_stop_tick_animation();
/// @}
#endif

View File

@@ -50,6 +50,7 @@
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "watch_uart.h"
#include "peripheral_clk_config.h"
void watch_enable_debug_uart(uint32_t baud) {

View File

@@ -21,8 +21,12 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef _WATCH_UART_H_INCLUDED
#define _WATCH_UART_H_INCLUDED
////< @file watch_uart.h
#include "watch.h"
/** @addtogroup debug Debug UART
* @brief This section covers functions related to the debug UART, available on
* pin D1 of the 9-pin connector.
@@ -51,3 +55,4 @@ void watch_debug_putc(char c);
__attribute__((deprecated("Use printf to log debug messages over USB.")))
void watch_debug_puts(char *s);
/// @}
#endif

View File

@@ -0,0 +1,35 @@
/*
* MIT License
*
* Copyright (c) 2021 Joey Castillo
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "watch_utility.h"
const char * watch_utility_get_weekday(watch_date_time date_time) {
static const char weekdays[7][3] = {"SA", "SU", "MO", "TU", "WE", "TH", "FR"};
date_time.unit.year += 20;
if (date_time.unit.month <= 2) {
date_time.unit.month += 12;
date_time.unit.year--;
}
return weekdays[(date_time.unit.day + 13 * (date_time.unit.month + 1) / 5 + date_time.unit.year + date_time.unit.year / 4 + 525) % 7];
}

View File

@@ -0,0 +1,41 @@
/*
* MIT License
*
* Copyright (c) 2021 Joey Castillo
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef _WATCH_UTILITY_H_INCLUDED
#define _WATCH_UTILITY_H_INCLUDED
////< @file watch_utility.h
#include "watch.h"
/** @addtogroup utility Utility Functions
* @brief This section covers various useful functions that don't fit anywhere else.
**/
/// @{
/** @brief Returns a two-letter weekday for the given timestamp, suitable for display
* in positions 0-1 of the watch face
* @param date_time The watch_date_time whose weekday you want.
*/
const char * watch_utility_get_weekday(watch_date_time date_time);
#endif