add tinyusb

This commit is contained in:
Joey Castillo
2021-08-28 12:50:18 -04:00
parent c9e00b83bb
commit 39a5c822a2
1054 changed files with 188322 additions and 0 deletions

View File

@@ -0,0 +1,479 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2020 Koji Kitayama
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
#if TUSB_OPT_DEVICE_ENABLED && ( \
( CFG_TUSB_MCU == OPT_MCU_MKL25ZXX ) || ( CFG_TUSB_MCU == OPT_MCU_K32L2BXX ) \
)
#include "fsl_device_registers.h"
#define KHCI USB0
#include "device/dcd.h"
//--------------------------------------------------------------------+
// MACRO TYPEDEF CONSTANT ENUM DECLARATION
//--------------------------------------------------------------------+
enum {
TOK_PID_OUT = 0x1u,
TOK_PID_IN = 0x9u,
TOK_PID_SETUP = 0xDu,
};
typedef struct TU_ATTR_PACKED
{
union {
uint32_t head;
struct {
union {
struct {
uint16_t : 2;
uint16_t tok_pid : 4;
uint16_t data : 1;
uint16_t own : 1;
uint16_t : 8;
};
struct {
uint16_t : 2;
uint16_t bdt_stall: 1;
uint16_t dts : 1;
uint16_t ninc : 1;
uint16_t keep : 1;
uint16_t : 10;
};
};
uint16_t bc : 10;
uint16_t : 6;
};
};
uint8_t *addr;
}buffer_descriptor_t;
TU_VERIFY_STATIC( sizeof(buffer_descriptor_t) == 8, "size is not correct" );
typedef struct TU_ATTR_PACKED
{
union {
uint32_t state;
struct {
uint32_t max_packet_size :11;
uint32_t : 5;
uint32_t odd : 1;
uint32_t :15;
};
};
uint16_t length;
uint16_t remaining;
}endpoint_state_t;
TU_VERIFY_STATIC( sizeof(endpoint_state_t) == 8, "size is not correct" );
typedef struct
{
union {
/* [#EP][OUT,IN][EVEN,ODD] */
buffer_descriptor_t bdt[16][2][2];
uint16_t bda[512];
};
TU_ATTR_ALIGNED(4) union {
endpoint_state_t endpoint[16][2];
endpoint_state_t endpoint_unified[16 * 2];
};
uint8_t setup_packet[8];
uint8_t addr;
}dcd_data_t;
//--------------------------------------------------------------------+
// INTERNAL OBJECT & FUNCTION DECLARATION
//--------------------------------------------------------------------+
// BDT(Buffer Descriptor Table) must be 256-byte aligned
CFG_TUSB_MEM_SECTION TU_ATTR_ALIGNED(512) static dcd_data_t _dcd;
TU_VERIFY_STATIC( sizeof(_dcd.bdt) == 512, "size is not correct" );
static void prepare_next_setup_packet(uint8_t rhport)
{
const unsigned out_odd = _dcd.endpoint[0][0].odd;
const unsigned in_odd = _dcd.endpoint[0][1].odd;
if (_dcd.bdt[0][0][out_odd].own) {
TU_LOG1("DCD fail to prepare the next SETUP %d %d\r\n", out_odd, in_odd);
return;
}
_dcd.bdt[0][0][out_odd].data = 0;
_dcd.bdt[0][0][out_odd ^ 1].data = 1;
_dcd.bdt[0][1][in_odd].data = 1;
_dcd.bdt[0][1][in_odd ^ 1].data = 0;
dcd_edpt_xfer(rhport, tu_edpt_addr(0, TUSB_DIR_OUT),
_dcd.setup_packet, sizeof(_dcd.setup_packet));
}
static void process_stall(uint8_t rhport)
{
if (KHCI->ENDPOINT[0].ENDPT & USB_ENDPT_EPSTALL_MASK) {
/* clear stall condition of the control pipe */
prepare_next_setup_packet(rhport);
KHCI->ENDPOINT[0].ENDPT &= ~USB_ENDPT_EPSTALL_MASK;
}
}
static void process_tokdne(uint8_t rhport)
{
const unsigned s = KHCI->STAT;
KHCI->ISTAT = USB_ISTAT_TOKDNE_MASK; /* fetch the next token if received */
buffer_descriptor_t *bd = (buffer_descriptor_t *)&_dcd.bda[s];
endpoint_state_t *ep = &_dcd.endpoint_unified[s >> 3];
unsigned odd = (s & USB_STAT_ODD_MASK) ? 1 : 0;
/* fetch pid before discarded by the next steps */
const unsigned pid = bd->tok_pid;
/* reset values for a next transfer */
bd->bdt_stall = 0;
bd->dts = 1;
bd->ninc = 0;
bd->keep = 0;
/* update the odd variable to prepare for the next transfer */
ep->odd = odd ^ 1;
if (pid == TOK_PID_SETUP) {
dcd_event_setup_received(rhport, bd->addr, true);
KHCI->CTL &= ~USB_CTL_TXSUSPENDTOKENBUSY_MASK;
return;
}
if (s >> 4) {
TU_LOG1("TKDNE %x\r\n", s);
}
const unsigned bc = bd->bc;
const unsigned remaining = ep->remaining - bc;
if (remaining && bc == ep->max_packet_size) {
/* continue the transferring consecutive data */
ep->remaining = remaining;
const int next_remaining = remaining - ep->max_packet_size;
if (next_remaining > 0) {
/* prepare to the after next transfer */
bd->addr += ep->max_packet_size * 2;
bd->bc = next_remaining > ep->max_packet_size ? ep->max_packet_size: next_remaining;
__DSB();
bd->own = 1; /* the own bit must set after addr */
}
return;
}
const unsigned length = ep->length;
dcd_event_xfer_complete(rhport,
((s & USB_STAT_TX_MASK) << 4) | (s >> USB_STAT_ENDP_SHIFT),
length - remaining, XFER_RESULT_SUCCESS, true);
if (0 == (s & USB_STAT_ENDP_MASK) && 0 == length) {
/* After completion a ZLP of control transfer,
* it prepares for the next steup transfer. */
if (_dcd.addr) {
/* When the transfer was the SetAddress,
* the device address should be updated here. */
KHCI->ADDR = _dcd.addr;
_dcd.addr = 0;
}
prepare_next_setup_packet(rhport);
}
}
static void process_bus_reset(uint8_t rhport)
{
KHCI->USBCTRL &= ~USB_USBCTRL_SUSP_MASK;
KHCI->CTL |= USB_CTL_ODDRST_MASK;
KHCI->ADDR = 0;
KHCI->INTEN = (KHCI->INTEN & ~USB_INTEN_RESUMEEN_MASK) | USB_INTEN_SLEEPEN_MASK;
KHCI->ENDPOINT[0].ENDPT = USB_ENDPT_EPHSHK_MASK | USB_ENDPT_EPRXEN_MASK | USB_ENDPT_EPTXEN_MASK;
for (unsigned i = 1; i < 16; ++i) {
KHCI->ENDPOINT[i].ENDPT = 0;
}
buffer_descriptor_t *bd = _dcd.bdt[0][0];
for (unsigned i = 0; i < sizeof(_dcd.bdt)/sizeof(*bd); ++i, ++bd) {
bd->head = 0;
}
const endpoint_state_t ep0 = {
.max_packet_size = CFG_TUD_ENDPOINT0_SIZE,
.odd = 0,
.length = 0,
.remaining = 0,
};
_dcd.endpoint[0][0] = ep0;
_dcd.endpoint[0][1] = ep0;
tu_memclr(_dcd.endpoint[1], sizeof(_dcd.endpoint) - sizeof(_dcd.endpoint[0]));
_dcd.addr = 0;
prepare_next_setup_packet(rhport);
KHCI->CTL &= ~USB_CTL_ODDRST_MASK;
dcd_event_bus_reset(rhport, TUSB_SPEED_FULL, true);
}
static void process_bus_inactive(uint8_t rhport)
{
(void) rhport;
const unsigned inten = KHCI->INTEN;
KHCI->INTEN = (inten & ~USB_INTEN_SLEEPEN_MASK) | USB_INTEN_RESUMEEN_MASK;
KHCI->USBCTRL |= USB_USBCTRL_SUSP_MASK;
dcd_event_bus_signal(rhport, DCD_EVENT_SUSPEND, true);
}
static void process_bus_active(uint8_t rhport)
{
(void) rhport;
KHCI->USBCTRL &= ~USB_USBCTRL_SUSP_MASK;
const unsigned inten = KHCI->INTEN;
KHCI->INTEN = (inten & ~USB_INTEN_RESUMEEN_MASK) | USB_INTEN_SLEEPEN_MASK;
dcd_event_bus_signal(rhport, DCD_EVENT_RESUME, true);
}
/*------------------------------------------------------------------*/
/* Device API
*------------------------------------------------------------------*/
void dcd_init(uint8_t rhport)
{
(void) rhport;
KHCI->USBTRC0 |= USB_USBTRC0_USBRESET_MASK;
while (KHCI->USBTRC0 & USB_USBTRC0_USBRESET_MASK);
tu_memclr(&_dcd, sizeof(_dcd));
KHCI->USBTRC0 |= TU_BIT(6); /* software must set this bit to 1 */
KHCI->BDTPAGE1 = (uint8_t)((uintptr_t)_dcd.bdt >> 8);
KHCI->BDTPAGE2 = (uint8_t)((uintptr_t)_dcd.bdt >> 16);
KHCI->BDTPAGE3 = (uint8_t)((uintptr_t)_dcd.bdt >> 24);
dcd_connect(rhport);
NVIC_ClearPendingIRQ(USB0_IRQn);
}
void dcd_int_enable(uint8_t rhport)
{
(void) rhport;
KHCI->INTEN = USB_INTEN_USBRSTEN_MASK | USB_INTEN_TOKDNEEN_MASK |
USB_INTEN_SLEEPEN_MASK | USB_INTEN_ERROREN_MASK | USB_INTEN_STALLEN_MASK;
NVIC_EnableIRQ(USB0_IRQn);
}
void dcd_int_disable(uint8_t rhport)
{
(void) rhport;
NVIC_DisableIRQ(USB0_IRQn);
KHCI->INTEN = 0;
}
void dcd_set_address(uint8_t rhport, uint8_t dev_addr)
{
(void) rhport;
_dcd.addr = dev_addr & 0x7F;
/* Response with status first before changing device address */
dcd_edpt_xfer(rhport, tu_edpt_addr(0, TUSB_DIR_IN), NULL, 0);
}
void dcd_remote_wakeup(uint8_t rhport)
{
(void) rhport;
unsigned cnt = SystemCoreClock / 100;
KHCI->CTL |= USB_CTL_RESUME_MASK;
while (cnt--) __NOP();
KHCI->CTL &= ~USB_CTL_RESUME_MASK;
}
void dcd_connect(uint8_t rhport)
{
(void) rhport;
KHCI->USBCTRL = 0;
KHCI->CONTROL |= USB_CONTROL_DPPULLUPNONOTG_MASK;
KHCI->CTL |= USB_CTL_USBENSOFEN_MASK;
}
void dcd_disconnect(uint8_t rhport)
{
(void) rhport;
KHCI->CTL = 0;
KHCI->CONTROL &= ~USB_CONTROL_DPPULLUPNONOTG_MASK;
}
//--------------------------------------------------------------------+
// Endpoint API
//--------------------------------------------------------------------+
bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const * ep_desc)
{
(void) rhport;
const unsigned ep_addr = ep_desc->bEndpointAddress;
const unsigned epn = ep_addr & 0xFu;
const unsigned dir = (ep_addr & TUSB_DIR_IN_MASK) ? TUSB_DIR_IN : TUSB_DIR_OUT;
const unsigned xfer = ep_desc->bmAttributes.xfer;
endpoint_state_t *ep = &_dcd.endpoint[epn][dir];
const unsigned odd = ep->odd;
buffer_descriptor_t *bd = &_dcd.bdt[epn][dir][0];
/* No support for control transfer */
TU_ASSERT(epn && (xfer != TUSB_XFER_CONTROL));
ep->max_packet_size = ep_desc->wMaxPacketSize.size;
unsigned val = USB_ENDPT_EPCTLDIS_MASK;
val |= (xfer != TUSB_XFER_ISOCHRONOUS) ? USB_ENDPT_EPHSHK_MASK: 0;
val |= dir ? USB_ENDPT_EPTXEN_MASK : USB_ENDPT_EPRXEN_MASK;
KHCI->ENDPOINT[epn].ENDPT |= val;
if (xfer != TUSB_XFER_ISOCHRONOUS) {
bd[odd].dts = 1;
bd[odd].data = 0;
bd[odd ^ 1].dts = 1;
bd[odd ^ 1].data = 1;
}
return true;
}
void dcd_edpt_close(uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
const unsigned epn = ep_addr & 0xFu;
const unsigned dir = (ep_addr & TUSB_DIR_IN_MASK) ? TUSB_DIR_IN : TUSB_DIR_OUT;
endpoint_state_t *ep = &_dcd.endpoint[epn][dir];
buffer_descriptor_t *bd = &_dcd.bdt[epn][dir][0];
const unsigned msk = dir ? USB_ENDPT_EPTXEN_MASK : USB_ENDPT_EPRXEN_MASK;
KHCI->ENDPOINT[epn].ENDPT &= ~msk;
ep->max_packet_size = 0;
ep->length = 0;
ep->remaining = 0;
bd->head = 0;
}
bool dcd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t* buffer, uint16_t total_bytes)
{
(void) rhport;
NVIC_DisableIRQ(USB0_IRQn);
const unsigned epn = ep_addr & 0xFu;
const unsigned dir = (ep_addr & TUSB_DIR_IN_MASK) ? TUSB_DIR_IN : TUSB_DIR_OUT;
endpoint_state_t *ep = &_dcd.endpoint[epn][dir];
buffer_descriptor_t *bd = &_dcd.bdt[epn][dir][ep->odd];
if (bd->own) {
TU_LOG1("DCD XFER fail %x %d %lx %lx\r\n", ep_addr, total_bytes, ep->state, bd->head);
return false; /* The last transfer has not completed */
}
ep->length = total_bytes;
ep->remaining = total_bytes;
const unsigned mps = ep->max_packet_size;
if (total_bytes > mps) {
buffer_descriptor_t *next = ep->odd ? bd - 1: bd + 1;
/* When total_bytes is greater than the max packet size,
* it prepares to the next transfer to avoid NAK in advance. */
next->bc = total_bytes >= 2 * mps ? mps: total_bytes - mps;
next->addr = buffer + mps;
next->own = 1;
}
bd->bc = total_bytes >= mps ? mps: total_bytes;
bd->addr = buffer;
__DSB();
bd->own = 1; /* the own bit must set after addr */
NVIC_EnableIRQ(USB0_IRQn);
return true;
}
void dcd_edpt_stall(uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
const unsigned epn = ep_addr & 0xFu;
if (0 == epn) {
KHCI->ENDPOINT[epn].ENDPT |= USB_ENDPT_EPSTALL_MASK;
} else {
const unsigned dir = (ep_addr & TUSB_DIR_IN_MASK) ? TUSB_DIR_IN : TUSB_DIR_OUT;
buffer_descriptor_t *bd = _dcd.bdt[epn][dir];
bd[0].bdt_stall = 1;
bd[1].bdt_stall = 1;
}
}
void dcd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
const unsigned epn = ep_addr & 0xFu;
const unsigned dir = (ep_addr & TUSB_DIR_IN_MASK) ? TUSB_DIR_IN : TUSB_DIR_OUT;
const unsigned odd = _dcd.endpoint[epn][dir].odd;
buffer_descriptor_t *bd = _dcd.bdt[epn][dir];
bd[odd ^ 1].own = 0;
bd[odd ^ 1].data = 1;
bd[odd ^ 1].bdt_stall = 0;
bd[odd].own = 0;
bd[odd].data = 0;
bd[odd].bdt_stall = 0;
}
//--------------------------------------------------------------------+
// ISR
//--------------------------------------------------------------------+
void dcd_int_handler(uint8_t rhport)
{
(void) rhport;
uint32_t is = KHCI->ISTAT;
uint32_t msk = KHCI->INTEN;
KHCI->ISTAT = is & ~msk;
is &= msk;
if (is & USB_ISTAT_ERROR_MASK) {
/* TODO: */
uint32_t es = KHCI->ERRSTAT;
KHCI->ERRSTAT = es;
KHCI->ISTAT = is; /* discard any pending events */
return;
}
if (is & USB_ISTAT_USBRST_MASK) {
KHCI->ISTAT = is; /* discard any pending events */
process_bus_reset(rhport);
return;
}
if (is & USB_ISTAT_SLEEP_MASK) {
KHCI->ISTAT = USB_ISTAT_SLEEP_MASK;
process_bus_inactive(rhport);
return;
}
if (is & USB_ISTAT_RESUME_MASK) {
KHCI->ISTAT = USB_ISTAT_RESUME_MASK;
process_bus_active(rhport);
return;
}
if (is & USB_ISTAT_SOFTOK_MASK) {
KHCI->ISTAT = USB_ISTAT_SOFTOK_MASK;
dcd_event_bus_signal(rhport, DCD_EVENT_SOF, true);
return;
}
if (is & USB_ISTAT_STALL_MASK) {
KHCI->ISTAT = USB_ISTAT_STALL_MASK;
process_stall(rhport);
return;
}
if (is & USB_ISTAT_TOKDNE_MASK) {
process_tokdne(rhport);
return;
}
}
#endif

View File

@@ -0,0 +1,582 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2019 Ha Thach (tinyusb.org)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
#if TUSB_OPT_DEVICE_ENABLED && \
(CFG_TUSB_MCU == OPT_MCU_LPC175X_6X || CFG_TUSB_MCU == OPT_MCU_LPC177X_8X || CFG_TUSB_MCU == OPT_MCU_LPC40XX)
#include "device/dcd.h"
#include "dcd_lpc17_40.h"
#include "chip.h"
//--------------------------------------------------------------------+
// MACRO CONSTANT TYPEDEF
//--------------------------------------------------------------------+
#define DCD_ENDPOINT_MAX 32
typedef struct TU_ATTR_ALIGNED(4)
{
//------------- Word 0 -------------//
uint32_t next;
//------------- Word 1 -------------//
uint16_t atle_mode : 2; // 00: normal, 01: ATLE (auto length extraction)
uint16_t next_valid : 1;
uint16_t : 1; ///< reserved
uint16_t isochronous : 1; // is an iso endpoint
uint16_t max_packet_size : 11;
volatile uint16_t buflen; // bytes for non-iso, number of packets for iso endpoint
//------------- Word 2 -------------//
volatile uint32_t buffer;
//------------- Word 3 -------------//
volatile uint16_t retired : 1; // initialized to zero
volatile uint16_t status : 4;
volatile uint16_t iso_last_packet_valid : 1;
volatile uint16_t atle_lsb_extracted : 1; // used in ATLE mode
volatile uint16_t atle_msb_extracted : 1; // used in ATLE mode
volatile uint16_t atle_mess_len_position : 6; // used in ATLE mode
uint16_t : 2;
volatile uint16_t present_count; // For non-iso : The number of bytes transferred by the DMA engine
// For iso : number of packets
//------------- Word 4 -------------//
// uint32_t iso_packet_size_addr; // iso only, can be omitted for non-iso
}dma_desc_t;
TU_VERIFY_STATIC( sizeof(dma_desc_t) == 16, "size is not correct"); // TODO not support ISO for now
typedef struct
{
// must be 128 byte aligned
volatile dma_desc_t* udca[DCD_ENDPOINT_MAX];
// TODO DMA does not support control transfer (0-1 are not used, offset to reduce memory)
dma_desc_t dd[DCD_ENDPOINT_MAX];
struct
{
uint8_t* out_buffer;
uint8_t out_bytes;
volatile bool out_received; // indicate if data is already received in endpoint
uint8_t in_bytes;
} control;
} dcd_data_t;
CFG_TUSB_MEM_SECTION TU_ATTR_ALIGNED(128) static dcd_data_t _dcd;
//--------------------------------------------------------------------+
// SIE Command
//--------------------------------------------------------------------+
static void sie_cmd_code (sie_cmdphase_t phase, uint8_t code_data)
{
LPC_USB->DevIntClr = (DEV_INT_COMMAND_CODE_EMPTY_MASK | DEV_INT_COMMAND_DATA_FULL_MASK);
LPC_USB->CmdCode = (phase << 8) | (code_data << 16);
uint32_t const wait_flag = (phase == SIE_CMDPHASE_READ) ? DEV_INT_COMMAND_DATA_FULL_MASK : DEV_INT_COMMAND_CODE_EMPTY_MASK;
while ((LPC_USB->DevIntSt & wait_flag) == 0) {}
LPC_USB->DevIntClr = wait_flag;
}
static void sie_write (uint8_t cmd_code, uint8_t data_len, uint8_t data)
{
sie_cmd_code(SIE_CMDPHASE_COMMAND, cmd_code);
if (data_len)
{
sie_cmd_code(SIE_CMDPHASE_WRITE, data);
}
}
static uint8_t sie_read (uint8_t cmd_code)
{
sie_cmd_code(SIE_CMDPHASE_COMMAND , cmd_code);
sie_cmd_code(SIE_CMDPHASE_READ , cmd_code);
return (uint8_t) LPC_USB->CmdData;
}
//--------------------------------------------------------------------+
// PIPE HELPER
//--------------------------------------------------------------------+
static inline uint8_t ep_addr2idx(uint8_t ep_addr)
{
return 2*(ep_addr & 0x0F) + ((ep_addr & TUSB_DIR_IN_MASK) ? 1 : 0);
}
static void set_ep_size(uint8_t ep_id, uint16_t max_packet_size)
{
// follows example in 11.10.4.2
LPC_USB->ReEp |= TU_BIT(ep_id);
LPC_USB->EpInd = ep_id; // select index before setting packet size
LPC_USB->MaxPSize = max_packet_size;
while ((LPC_USB->DevIntSt & DEV_INT_ENDPOINT_REALIZED_MASK) == 0) {}
LPC_USB->DevIntClr = DEV_INT_ENDPOINT_REALIZED_MASK;
}
//--------------------------------------------------------------------+
// CONTROLLER API
//--------------------------------------------------------------------+
static void bus_reset(void)
{
// step 7 : slave mode set up
LPC_USB->EpIntClr = 0xFFFFFFFF; // clear all pending interrupt
LPC_USB->DevIntClr = 0xFFFFFFFF; // clear all pending interrupt
LPC_USB->EpIntEn = 0x03UL; // control endpoint cannot use DMA, non-control all use DMA
LPC_USB->EpIntPri = 0x03UL; // fast for control endpoint
// step 8 : DMA set up
LPC_USB->EpDMADis = 0xFFFFFFFF; // firstly disable all dma
LPC_USB->DMARClr = 0xFFFFFFFF; // clear all pending interrupt
LPC_USB->EoTIntClr = 0xFFFFFFFF;
LPC_USB->NDDRIntClr = 0xFFFFFFFF;
LPC_USB->SysErrIntClr = 0xFFFFFFFF;
tu_memclr(&_dcd, sizeof(dcd_data_t));
}
void dcd_init(uint8_t rhport)
{
(void) rhport;
//------------- user manual 11.13 usb device controller initialization -------------//
// step 6 : set up control endpoint
set_ep_size(0, CFG_TUD_ENDPOINT0_SIZE);
set_ep_size(1, CFG_TUD_ENDPOINT0_SIZE);
bus_reset();
LPC_USB->DevIntEn = (DEV_INT_DEVICE_STATUS_MASK | DEV_INT_ENDPOINT_FAST_MASK | DEV_INT_ENDPOINT_SLOW_MASK | DEV_INT_ERROR_MASK);
LPC_USB->UDCAH = (uint32_t) _dcd.udca;
LPC_USB->DMAIntEn = (DMA_INT_END_OF_XFER_MASK /*| DMA_INT_NEW_DD_REQUEST_MASK*/ | DMA_INT_ERROR_MASK);
dcd_connect(rhport);
// Clear pending IRQ
NVIC_ClearPendingIRQ(USB_IRQn);
}
void dcd_int_enable(uint8_t rhport)
{
(void) rhport;
NVIC_EnableIRQ(USB_IRQn);
}
void dcd_int_disable(uint8_t rhport)
{
(void) rhport;
NVIC_DisableIRQ(USB_IRQn);
}
void dcd_set_address(uint8_t rhport, uint8_t dev_addr)
{
// Response with status first before changing device address
dcd_edpt_xfer(rhport, tu_edpt_addr(0, TUSB_DIR_IN), NULL, 0);
sie_write(SIE_CMDCODE_SET_ADDRESS, 1, 0x80 | dev_addr); // 7th bit is : device_enable
// Also Set Configure Device to enable non-control endpoint response
sie_write(SIE_CMDCODE_CONFIGURE_DEVICE, 1, 1);
}
void dcd_remote_wakeup(uint8_t rhport)
{
(void) rhport;
}
void dcd_connect(uint8_t rhport)
{
(void) rhport;
sie_write(SIE_CMDCODE_DEVICE_STATUS, 1, SIE_DEV_STATUS_CONNECT_STATUS_MASK);
}
void dcd_disconnect(uint8_t rhport)
{
(void) rhport;
sie_write(SIE_CMDCODE_DEVICE_STATUS, 1, 0);
}
//--------------------------------------------------------------------+
// CONTROL HELPER
//--------------------------------------------------------------------+
static inline uint8_t byte2dword(uint8_t bytes)
{
return (bytes + 3) / 4; // length in dwords
}
static void control_ep_write(void const * buffer, uint8_t len)
{
uint32_t const * buf32 = (uint32_t const *) buffer;
LPC_USB->Ctrl = USBCTRL_WRITE_ENABLE_MASK; // logical endpoint = 0
LPC_USB->TxPLen = (uint32_t) len;
for (uint8_t count = 0; count < byte2dword(len); count++)
{
LPC_USB->TxData = *buf32; // NOTE: cortex M3 have no problem with alignment
buf32++;
}
LPC_USB->Ctrl = 0;
// select control IN & validate the endpoint
sie_write(SIE_CMDCODE_ENDPOINT_SELECT+1, 0, 0);
sie_write(SIE_CMDCODE_BUFFER_VALIDATE , 0, 0);
}
static uint8_t control_ep_read(void * buffer, uint8_t len)
{
LPC_USB->Ctrl = USBCTRL_READ_ENABLE_MASK; // logical endpoint = 0
while ((LPC_USB->RxPLen & USBRXPLEN_PACKET_READY_MASK) == 0) {} // TODO blocking, should have timeout
len = tu_min8(len, (uint8_t) (LPC_USB->RxPLen & USBRXPLEN_PACKET_LENGTH_MASK) );
uint32_t *buf32 = (uint32_t*) buffer;
for (uint8_t count=0; count < byte2dword(len); count++)
{
*buf32 = LPC_USB->RxData;
buf32++;
}
LPC_USB->Ctrl = 0;
// select control OUT & clear the endpoint
sie_write(SIE_CMDCODE_ENDPOINT_SELECT+0, 0, 0);
sie_write(SIE_CMDCODE_BUFFER_CLEAR , 0, 0);
return len;
}
//--------------------------------------------------------------------+
// DCD Endpoint Port
//--------------------------------------------------------------------+
bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const * p_endpoint_desc)
{
(void) rhport;
uint8_t const epnum = tu_edpt_number(p_endpoint_desc->bEndpointAddress);
uint8_t const ep_id = ep_addr2idx(p_endpoint_desc->bEndpointAddress);
// Endpoint type is fixed to endpoint number
// 1: interrupt, 2: Bulk, 3: Iso and so on
switch ( p_endpoint_desc->bmAttributes.xfer )
{
case TUSB_XFER_INTERRUPT:
TU_ASSERT((epnum % 3) == 1);
break;
case TUSB_XFER_BULK:
TU_ASSERT((epnum % 3) == 2 || (epnum == 15));
break;
case TUSB_XFER_ISOCHRONOUS:
TU_ASSERT((epnum % 3) == 0 && (epnum != 0) && (epnum != 15));
break;
default:
break;
}
//------------- Realize Endpoint with Max Packet Size -------------//
set_ep_size(ep_id, p_endpoint_desc->wMaxPacketSize.size);
//------------- first DD prepare -------------//
dma_desc_t* const dd = &_dcd.dd[ep_id];
tu_memclr(dd, sizeof(dma_desc_t));
dd->isochronous = (p_endpoint_desc->bmAttributes.xfer == TUSB_XFER_ISOCHRONOUS) ? 1 : 0;
dd->max_packet_size = p_endpoint_desc->wMaxPacketSize.size;
dd->retired = 1; // invalid at first
sie_write(SIE_CMDCODE_ENDPOINT_SET_STATUS + ep_id, 1, 0); // clear all endpoint status
return true;
}
void dcd_edpt_stall(uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
if ( tu_edpt_number(ep_addr) == 0 )
{
sie_write(SIE_CMDCODE_ENDPOINT_SET_STATUS+0, 1, SIE_SET_ENDPOINT_STALLED_MASK | SIE_SET_ENDPOINT_CONDITION_STALLED_MASK);
}else
{
uint8_t ep_id = ep_addr2idx( ep_addr );
sie_write(SIE_CMDCODE_ENDPOINT_SET_STATUS+ep_id, 1, SIE_SET_ENDPOINT_STALLED_MASK);
}
}
void dcd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
uint8_t ep_id = ep_addr2idx(ep_addr);
sie_write(SIE_CMDCODE_ENDPOINT_SET_STATUS+ep_id, 1, 0);
}
static bool control_xact(uint8_t rhport, uint8_t dir, uint8_t * buffer, uint8_t len)
{
(void) rhport;
if ( dir )
{
_dcd.control.in_bytes = len;
control_ep_write(buffer, len);
}else
{
if ( _dcd.control.out_received )
{
// Already received the DATA OUT packet
_dcd.control.out_received = false;
_dcd.control.out_buffer = NULL;
_dcd.control.out_bytes = 0;
uint8_t received = control_ep_read(buffer, len);
dcd_event_xfer_complete(0, 0, received, XFER_RESULT_SUCCESS, true);
}else
{
_dcd.control.out_buffer = buffer;
_dcd.control.out_bytes = len;
}
}
return true;
}
bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t* buffer, uint16_t total_bytes)
{
// Control transfer is not DMA support, and must be done in slave mode
if ( tu_edpt_number(ep_addr) == 0 )
{
return control_xact(rhport, tu_edpt_dir(ep_addr), buffer, (uint8_t) total_bytes);
}
else
{
uint8_t ep_id = ep_addr2idx(ep_addr);
dma_desc_t* dd = &_dcd.dd[ep_id];
// Prepare DMA descriptor
// Isochronous & max packet size must be preserved, Other fields of dd should be clear
uint16_t const ep_size = dd->max_packet_size;
uint8_t is_iso = dd->isochronous;
tu_memclr(dd, sizeof(dma_desc_t));
dd->isochronous = is_iso;
dd->max_packet_size = ep_size;
dd->buffer = (uint32_t) buffer;
dd->buflen = total_bytes;
_dcd.udca[ep_id] = dd;
if ( ep_id % 2 )
{
// Clear EP interrupt before Enable DMA
LPC_USB->EpIntEn &= ~TU_BIT(ep_id);
LPC_USB->EpDMAEn = TU_BIT(ep_id);
// endpoint IN need to actively raise DMA request
LPC_USB->DMARSet = TU_BIT(ep_id);
}else
{
// Enable DMA
LPC_USB->EpDMAEn = TU_BIT(ep_id);
}
return true;
}
}
//--------------------------------------------------------------------+
// ISR
//--------------------------------------------------------------------+
// handle control xfer (slave mode)
static void control_xfer_isr(uint8_t rhport, uint32_t ep_int_status)
{
// Control out complete
if ( ep_int_status & TU_BIT(0) )
{
bool is_setup = sie_read(SIE_CMDCODE_ENDPOINT_SELECT+0) & SIE_SELECT_ENDPOINT_SETUP_RECEIVED_MASK;
LPC_USB->EpIntClr = TU_BIT(0);
if (is_setup)
{
uint8_t setup_packet[8];
control_ep_read(setup_packet, 8); // TODO read before clear setup above
dcd_event_setup_received(rhport, setup_packet, true);
}
else if ( _dcd.control.out_buffer )
{
// software queued transfer previously
uint8_t received = control_ep_read(_dcd.control.out_buffer, _dcd.control.out_bytes);
_dcd.control.out_buffer = NULL;
_dcd.control.out_bytes = 0;
dcd_event_xfer_complete(rhport, 0, received, XFER_RESULT_SUCCESS, true);
}else
{
// hardware auto ack packet -> mark as received
_dcd.control.out_received = true;
}
}
// Control In complete
if ( ep_int_status & TU_BIT(1) )
{
LPC_USB->EpIntClr = TU_BIT(1);
dcd_event_xfer_complete(rhport, TUSB_DIR_IN_MASK, _dcd.control.in_bytes, XFER_RESULT_SUCCESS, true);
}
}
// handle bus event signal
static void bus_event_isr(uint8_t rhport)
{
uint8_t const dev_status = sie_read(SIE_CMDCODE_DEVICE_STATUS);
if (dev_status & SIE_DEV_STATUS_RESET_MASK)
{
bus_reset();
dcd_event_bus_reset(rhport, TUSB_SPEED_FULL, true);
}
if (dev_status & SIE_DEV_STATUS_CONNECT_CHANGE_MASK)
{
// device is disconnected, require using VBUS (P1_30)
dcd_event_bus_signal(rhport, DCD_EVENT_UNPLUGGED, true);
}
if (dev_status & SIE_DEV_STATUS_SUSPEND_CHANGE_MASK)
{
if (dev_status & SIE_DEV_STATUS_SUSPEND_MASK)
{
dcd_event_bus_signal(rhport, DCD_EVENT_SUSPEND, true);
}
else
{
dcd_event_bus_signal(rhport, DCD_EVENT_RESUME, true);
}
}
}
// Helper to complete a DMA descriptor for non-control transfer
static void dd_complete_isr(uint8_t rhport, uint8_t ep_id)
{
dma_desc_t* const dd = &_dcd.dd[ep_id];
uint8_t result = (dd->status == DD_STATUS_NORMAL || dd->status == DD_STATUS_DATA_UNDERUN) ? XFER_RESULT_SUCCESS : XFER_RESULT_FAILED;
uint8_t const ep_addr = (ep_id / 2) | ((ep_id & 0x01) ? TUSB_DIR_IN_MASK : 0);
dcd_event_xfer_complete(rhport, ep_addr, dd->present_count, result, true);
}
// main USB IRQ handler
void dcd_int_handler(uint8_t rhport)
{
uint32_t const dev_int_status = LPC_USB->DevIntSt & LPC_USB->DevIntEn;
LPC_USB->DevIntClr = dev_int_status;// Acknowledge handled interrupt
// Bus event
if (dev_int_status & DEV_INT_DEVICE_STATUS_MASK)
{
bus_event_isr(rhport);
}
// Endpoint interrupt
uint32_t const ep_int_status = LPC_USB->EpIntSt & LPC_USB->EpIntEn;
// Control Endpoint are fast
if (dev_int_status & DEV_INT_ENDPOINT_FAST_MASK)
{
// Note clear USBEpIntClr will also clear the setup received bit --> clear after handle setup packet
// Only clear USBEpIntClr 1 endpoint each, and should wait for CDFULL bit set
control_xfer_isr(rhport, ep_int_status);
}
// non-control IN are slow
if (dev_int_status & DEV_INT_ENDPOINT_SLOW_MASK)
{
for ( uint8_t ep_id = 3; ep_id < DCD_ENDPOINT_MAX; ep_id += 2 )
{
if ( tu_bit_test(ep_int_status, ep_id) )
{
LPC_USB->EpIntClr = TU_BIT(ep_id);
// Clear Ep interrupt for next DMA
LPC_USB->EpIntEn &= ~TU_BIT(ep_id);
dd_complete_isr(rhport, ep_id);
}
}
}
// DMA transfer complete (RAM <-> EP) for Non-Control
// OUT: USB transfer is fully complete
// IN : UBS transfer is still on-going -> enable EpIntEn to know when it is complete
uint32_t const dma_int_status = LPC_USB->DMAIntSt & LPC_USB->DMAIntEn;
if (dma_int_status & DMA_INT_END_OF_XFER_MASK)
{
uint32_t const eot = LPC_USB->EoTIntSt;
LPC_USB->EoTIntClr = eot; // acknowledge interrupt source
for ( uint8_t ep_id = 2; ep_id < DCD_ENDPOINT_MAX; ep_id++ )
{
if ( tu_bit_test(eot, ep_id) )
{
if ( ep_id & 0x01 )
{
// IN enable EpInt for end of usb transfer
LPC_USB->EpIntEn |= TU_BIT(ep_id);
}else
{
// OUT
dd_complete_isr(rhport, ep_id);
}
}
}
}
// Errors
if ( (dev_int_status & DEV_INT_ERROR_MASK) || (dma_int_status & DMA_INT_ERROR_MASK) )
{
uint32_t error_status = sie_read(SIE_CMDCODE_READ_ERROR_STATUS);
(void) error_status;
TU_BREAKPOINT();
}
}
#endif

View File

@@ -0,0 +1,152 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2019 Ha Thach (tinyusb.org)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#ifndef _TUSB_DCD_LPC17_40_H_
#define _TUSB_DCD_LPC17_40_H_
#include "common/tusb_common.h"
#ifdef __cplusplus
extern "C" {
#endif
//--------------------------------------------------------------------+
// Register Interface
//--------------------------------------------------------------------+
//------------- USB Interrupt USBIntSt -------------//
//enum {
// DCD_USB_REQ_LOW_PRIO_MASK = TU_BIT(0),
// DCD_USB_REQ_HIGH_PRIO_MASK = TU_BIT(1),
// DCD_USB_REQ_DMA_MASK = TU_BIT(2),
// DCD_USB_REQ_NEED_CLOCK_MASK = TU_BIT(8),
// DCD_USB_REQ_ENABLE_MASK = TU_BIT(31)
//};
//------------- Device Interrupt USBDevInt -------------//
enum {
DEV_INT_FRAME_MASK = TU_BIT(0),
DEV_INT_ENDPOINT_FAST_MASK = TU_BIT(1),
DEV_INT_ENDPOINT_SLOW_MASK = TU_BIT(2),
DEV_INT_DEVICE_STATUS_MASK = TU_BIT(3),
DEV_INT_COMMAND_CODE_EMPTY_MASK = TU_BIT(4),
DEV_INT_COMMAND_DATA_FULL_MASK = TU_BIT(5),
DEV_INT_RX_ENDPOINT_PACKET_MASK = TU_BIT(6),
DEV_INT_TX_ENDPOINT_PACKET_MASK = TU_BIT(7),
DEV_INT_ENDPOINT_REALIZED_MASK = TU_BIT(8),
DEV_INT_ERROR_MASK = TU_BIT(9)
};
//------------- DMA Interrupt USBDMAInt-------------//
enum {
DMA_INT_END_OF_XFER_MASK = TU_BIT(0),
DMA_INT_NEW_DD_REQUEST_MASK = TU_BIT(1),
DMA_INT_ERROR_MASK = TU_BIT(2)
};
//------------- USBCtrl -------------//
enum {
USBCTRL_READ_ENABLE_MASK = TU_BIT(0),
USBCTRL_WRITE_ENABLE_MASK = TU_BIT(1),
};
//------------- USBRxPLen -------------//
enum {
USBRXPLEN_PACKET_LENGTH_MASK = (TU_BIT(10)-1),
USBRXPLEN_DATA_VALID_MASK = TU_BIT(10),
USBRXPLEN_PACKET_READY_MASK = TU_BIT(11),
};
//------------- SIE Command Code -------------//
typedef enum
{
SIE_CMDPHASE_WRITE = 1,
SIE_CMDPHASE_READ = 2,
SIE_CMDPHASE_COMMAND = 5
} sie_cmdphase_t;
enum {
// device commands
SIE_CMDCODE_SET_ADDRESS = 0xd0,
SIE_CMDCODE_CONFIGURE_DEVICE = 0xd8,
SIE_CMDCODE_SET_MODE = 0xf3,
SIE_CMDCODE_READ_FRAME_NUMBER = 0xf5,
SIE_CMDCODE_READ_TEST_REGISTER = 0xfd,
SIE_CMDCODE_DEVICE_STATUS = 0xfe,
SIE_CMDCODE_GET_ERROR = 0xff,
SIE_CMDCODE_READ_ERROR_STATUS = 0xfb,
// endpoint commands
SIE_CMDCODE_ENDPOINT_SELECT = 0x00, // + endpoint index
SIE_CMDCODE_ENDPOINT_SELECT_CLEAR_INTERRUPT = 0x40, // + endpoint index, should use USBEpIntClr instead
SIE_CMDCODE_ENDPOINT_SET_STATUS = 0x40, // + endpoint index
SIE_CMDCODE_BUFFER_CLEAR = 0xf2,
SIE_CMDCODE_BUFFER_VALIDATE = 0xfa
};
//------------- SIE Device Status (get/set from SIE_CMDCODE_DEVICE_STATUS) -------------//
enum {
SIE_DEV_STATUS_CONNECT_STATUS_MASK = TU_BIT(0),
SIE_DEV_STATUS_CONNECT_CHANGE_MASK = TU_BIT(1),
SIE_DEV_STATUS_SUSPEND_MASK = TU_BIT(2),
SIE_DEV_STATUS_SUSPEND_CHANGE_MASK = TU_BIT(3),
SIE_DEV_STATUS_RESET_MASK = TU_BIT(4)
};
//------------- SIE Select Endpoint Command -------------//
enum {
SIE_SELECT_ENDPOINT_FULL_EMPTY_MASK = TU_BIT(0), // 0: empty, 1 full. IN endpoint checks empty, OUT endpoint check full
SIE_SELECT_ENDPOINT_STALL_MASK = TU_BIT(1),
SIE_SELECT_ENDPOINT_SETUP_RECEIVED_MASK = TU_BIT(2), // clear by SIE_CMDCODE_ENDPOINT_SELECT_CLEAR_INTERRUPT
SIE_SELECT_ENDPOINT_PACKET_OVERWRITTEN_MASK = TU_BIT(3), // previous packet is overwritten by a SETUP packet
SIE_SELECT_ENDPOINT_NAK_MASK = TU_BIT(4), // last packet response is NAK (auto clear by an ACK)
SIE_SELECT_ENDPOINT_BUFFER1_FULL_MASK = TU_BIT(5),
SIE_SELECT_ENDPOINT_BUFFER2_FULL_MASK = TU_BIT(6)
};
typedef enum
{
SIE_SET_ENDPOINT_STALLED_MASK = TU_BIT(0),
SIE_SET_ENDPOINT_DISABLED_MASK = TU_BIT(5),
SIE_SET_ENDPOINT_RATE_FEEDBACK_MASK = TU_BIT(6),
SIE_SET_ENDPOINT_CONDITION_STALLED_MASK = TU_BIT(7),
}sie_endpoint_set_status_mask_t;
//------------- DMA Descriptor Status -------------//
enum {
DD_STATUS_NOT_SERVICED = 0,
DD_STATUS_BEING_SERVICED,
DD_STATUS_NORMAL,
DD_STATUS_DATA_UNDERUN, // short packet
DD_STATUS_DATA_OVERRUN,
DD_STATUS_SYSTEM_ERROR
};
#ifdef __cplusplus
}
#endif
#endif

View File

@@ -0,0 +1,47 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2019, Ha Thach (tinyusb.org)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
#if TUSB_OPT_HOST_ENABLED && \
(CFG_TUSB_MCU == OPT_MCU_LPC175X_6X || CFG_TUSB_MCU == OPT_MCU_LPC177X_8X || CFG_TUSB_MCU == OPT_MCU_LPC40XX)
#include "chip.h"
void hcd_int_enable(uint8_t rhport)
{
(void) rhport;
NVIC_EnableIRQ(USB_IRQn);
}
void hcd_int_disable(uint8_t rhport)
{
(void) rhport;
NVIC_DisableIRQ(USB_IRQn);
}
#endif

View File

@@ -0,0 +1,537 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2019 Ha Thach (tinyusb.org)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
/* Since 2012 starting with LPC11uxx, NXP start to use common USB Device Controller with code name LPC IP3511
* for almost their new MCUs. Currently supported and tested families are
* - LPC11U68, LPC11U37
* - LPC1347
* - LPC51U68
* - LPC54114
* - LPC55s69
*/
#if TUSB_OPT_DEVICE_ENABLED && ( CFG_TUSB_MCU == OPT_MCU_LPC11UXX || \
CFG_TUSB_MCU == OPT_MCU_LPC13XX || \
CFG_TUSB_MCU == OPT_MCU_LPC15XX || \
CFG_TUSB_MCU == OPT_MCU_LPC51UXX || \
CFG_TUSB_MCU == OPT_MCU_LPC54XXX || \
CFG_TUSB_MCU == OPT_MCU_LPC55XX)
//--------------------------------------------------------------------+
// INCLUDE
//--------------------------------------------------------------------+
#if CFG_TUSB_MCU == OPT_MCU_LPC11UXX || CFG_TUSB_MCU == OPT_MCU_LPC13XX || CFG_TUSB_MCU == OPT_MCU_LPC15XX
// LPCOpen
#include "chip.h"
#else
// SDK
#include "fsl_device_registers.h"
#define INCLUDE_FSL_DEVICE_REGISTERS
#endif
#include "device/dcd.h"
//--------------------------------------------------------------------+
// IP3511 Registers
//--------------------------------------------------------------------+
typedef struct {
__IO uint32_t DEVCMDSTAT; // Device Command/Status register, offset: 0x0
__I uint32_t INFO; // Info register, offset: 0x4
__IO uint32_t EPLISTSTART; // EP Command/Status List start address, offset: 0x8
__IO uint32_t DATABUFSTART; // Data buffer start address, offset: 0xC
__IO uint32_t LPM; // Link Power Management register, offset: 0x10
__IO uint32_t EPSKIP; // Endpoint skip, offset: 0x14
__IO uint32_t EPINUSE; // Endpoint Buffer in use, offset: 0x18
__IO uint32_t EPBUFCFG; // Endpoint Buffer Configuration register, offset: 0x1C
__IO uint32_t INTSTAT; // interrupt status register, offset: 0x20
__IO uint32_t INTEN; // interrupt enable register, offset: 0x24
__IO uint32_t INTSETSTAT; // set interrupt status register, offset: 0x28
uint8_t RESERVED_0[8];
__I uint32_t EPTOGGLE; // Endpoint toggle register, offset: 0x34
} dcd_registers_t;
// Max nbytes for each control/bulk/interrupt transfer
enum {
NBYTES_CBI_FULLSPEED_MAX = 64,
NBYTES_CBI_HIGHSPEED_MAX = 32767 // can be up to all 15-bit, but only tested with 4096
};
enum {
INT_SOF_MASK = TU_BIT(30),
INT_DEVICE_STATUS_MASK = TU_BIT(31)
};
enum {
CMDSTAT_DEVICE_ADDR_MASK = TU_BIT(7 )-1,
CMDSTAT_DEVICE_ENABLE_MASK = TU_BIT(7 ),
CMDSTAT_SETUP_RECEIVED_MASK = TU_BIT(8 ),
CMDSTAT_DEVICE_CONNECT_MASK = TU_BIT(16), // reflect the soft-connect only, does not reflect the actual attached state
CMDSTAT_DEVICE_SUSPEND_MASK = TU_BIT(17),
// 23-22 is link speed (only available for HighSpeed port)
CMDSTAT_CONNECT_CHANGE_MASK = TU_BIT(24),
CMDSTAT_SUSPEND_CHANGE_MASK = TU_BIT(25),
CMDSTAT_RESET_CHANGE_MASK = TU_BIT(26),
CMDSTAT_VBUS_DEBOUNCED_MASK = TU_BIT(28),
};
enum {
CMDSTAT_SPEED_SHIFT = 22
};
//--------------------------------------------------------------------+
// Endpoint Command/Status List
//--------------------------------------------------------------------+
// Endpoint Command/Status
typedef union TU_ATTR_PACKED
{
// Full and High speed has different bit layout for buffer_offset and nbytes
// Buffer (aligned 64) = DATABUFSTART [31:22] | buffer_offset [21:6]
volatile struct {
uint32_t offset : 16;
uint32_t nbytes : 10;
uint32_t TU_RESERVED : 6;
} buffer_fs;
// Buffer (aligned 64) = USB_RAM [31:17] | buffer_offset [16:6]
volatile struct {
uint32_t offset : 11 ;
uint32_t nbytes : 15 ;
uint32_t TU_RESERVED : 6 ;
} buffer_hs;
volatile struct {
uint32_t TU_RESERVED : 26;
uint32_t is_iso : 1 ;
uint32_t toggle_mode : 1 ;
uint32_t toggle_reset : 1 ;
uint32_t stall : 1 ;
uint32_t disable : 1 ;
uint32_t active : 1 ;
};
}ep_cmd_sts_t;
TU_VERIFY_STATIC( sizeof(ep_cmd_sts_t) == 4, "size is not correct" );
// Software transfer management
typedef struct
{
uint16_t total_bytes;
uint16_t xferred_bytes;
uint16_t nbytes;
// prevent unaligned access on Highspeed port on USB_SRAM
uint16_t TU_RESERVED;
}xfer_dma_t;
// Absolute max of endpoints pairs for all port
// - 11 13 15 51 54 has 5x2 endpoints
// - 55 usb0 (FS) has 5x2 endpoints, usb1 (HS) has 6x2 endpoints
#define MAX_EP_PAIRS 6
// NOTE data will be transferred as soon as dcd get request by dcd_pipe(_queue)_xfer using double buffering.
// current_td is used to keep track of number of remaining & xferred bytes of the current request.
typedef struct
{
// 256 byte aligned, 2 for double buffer (not used)
// Each cmd_sts can only transfer up to DMA_NBYTES_MAX bytes each
ep_cmd_sts_t ep[2*MAX_EP_PAIRS][2];
xfer_dma_t dma[2*MAX_EP_PAIRS];
TU_ATTR_ALIGNED(64) uint8_t setup_packet[8];
}dcd_data_t;
// EP list must be 256-byte aligned
// Some MCU controller may require this variable to be placed in specific SRAM region.
// For example: LPC55s69 port1 Highspeed must be USB_RAM (0x40100000)
// Use CFG_TUSB_MEM_SECTION to place it accordingly.
CFG_TUSB_MEM_SECTION TU_ATTR_ALIGNED(256) static dcd_data_t _dcd;
//--------------------------------------------------------------------+
// Multiple Controllers
//--------------------------------------------------------------------+
typedef struct
{
dcd_registers_t* regs; // registers
const tusb_speed_t max_speed; // max link speed
const IRQn_Type irqnum; // IRQ number
const uint8_t ep_pairs; // Max bi-directional Endpoints
}dcd_controller_t;
#ifdef INCLUDE_FSL_DEVICE_REGISTERS
static const dcd_controller_t _dcd_controller[] =
{
{ .regs = (dcd_registers_t*) USB0_BASE , .max_speed = TUSB_SPEED_FULL, .irqnum = USB0_IRQn, .ep_pairs = FSL_FEATURE_USB_EP_NUM },
#if defined(FSL_FEATURE_SOC_USBHSD_COUNT) && FSL_FEATURE_SOC_USBHSD_COUNT
{ .regs = (dcd_registers_t*) USBHSD_BASE, .max_speed = TUSB_SPEED_HIGH, .irqnum = USB1_IRQn, .ep_pairs = FSL_FEATURE_USBHSD_EP_NUM }
#endif
};
#else
static const dcd_controller_t _dcd_controller[] =
{
{ .regs = (dcd_registers_t*) LPC_USB0_BASE, .max_speed = TUSB_SPEED_FULL, .irqnum = USB0_IRQn, .ep_pairs = 5 },
};
#endif
//--------------------------------------------------------------------+
// INTERNAL OBJECT & FUNCTION DECLARATION
//--------------------------------------------------------------------+
static inline uint16_t get_buf_offset(void const * buffer)
{
uint32_t addr = (uint32_t) buffer;
TU_ASSERT( (addr & 0x3f) == 0, 0 );
return ( (addr >> 6) & 0xFFFFUL ) ;
}
static inline uint8_t ep_addr2id(uint8_t ep_addr)
{
return 2*(ep_addr & 0x0F) + ((ep_addr & TUSB_DIR_IN_MASK) ? 1 : 0);
}
//--------------------------------------------------------------------+
// CONTROLLER API
//--------------------------------------------------------------------+
void dcd_init(uint8_t rhport)
{
dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs;
dcd_reg->EPLISTSTART = (uint32_t) _dcd.ep;
dcd_reg->DATABUFSTART = tu_align((uint32_t) &_dcd, TU_BIT(22)); // 22-bit alignment
dcd_reg->INTSTAT |= dcd_reg->INTSTAT; // clear all pending interrupt
dcd_reg->INTEN = INT_DEVICE_STATUS_MASK;
dcd_reg->DEVCMDSTAT |= CMDSTAT_DEVICE_ENABLE_MASK | CMDSTAT_DEVICE_CONNECT_MASK |
CMDSTAT_RESET_CHANGE_MASK | CMDSTAT_CONNECT_CHANGE_MASK | CMDSTAT_SUSPEND_CHANGE_MASK;
NVIC_ClearPendingIRQ(_dcd_controller[rhport].irqnum);
}
void dcd_int_enable(uint8_t rhport)
{
NVIC_EnableIRQ(_dcd_controller[rhport].irqnum);
}
void dcd_int_disable(uint8_t rhport)
{
NVIC_DisableIRQ(_dcd_controller[rhport].irqnum);
}
void dcd_set_address(uint8_t rhport, uint8_t dev_addr)
{
dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs;
// Response with status first before changing device address
dcd_edpt_xfer(rhport, tu_edpt_addr(0, TUSB_DIR_IN), NULL, 0);
dcd_reg->DEVCMDSTAT &= ~CMDSTAT_DEVICE_ADDR_MASK;
dcd_reg->DEVCMDSTAT |= dev_addr;
}
void dcd_remote_wakeup(uint8_t rhport)
{
(void) rhport;
}
void dcd_connect(uint8_t rhport)
{
dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs;
dcd_reg->DEVCMDSTAT |= CMDSTAT_DEVICE_CONNECT_MASK;
}
void dcd_disconnect(uint8_t rhport)
{
dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs;
dcd_reg->DEVCMDSTAT &= ~CMDSTAT_DEVICE_CONNECT_MASK;
}
//--------------------------------------------------------------------+
// DCD Endpoint Port
//--------------------------------------------------------------------+
void dcd_edpt_stall(uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
// TODO cannot able to STALL Control OUT endpoint !!!!! FIXME try some walk-around
uint8_t const ep_id = ep_addr2id(ep_addr);
_dcd.ep[ep_id][0].stall = 1;
}
void dcd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
uint8_t const ep_id = ep_addr2id(ep_addr);
_dcd.ep[ep_id][0].stall = 0;
_dcd.ep[ep_id][0].toggle_reset = 1;
_dcd.ep[ep_id][0].toggle_mode = 0;
}
bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const * p_endpoint_desc)
{
(void) rhport;
// TODO not support ISO yet
TU_VERIFY(p_endpoint_desc->bmAttributes.xfer != TUSB_XFER_ISOCHRONOUS);
//------------- Prepare Queue Head -------------//
uint8_t ep_id = ep_addr2id(p_endpoint_desc->bEndpointAddress);
// Check if endpoint is available
TU_ASSERT( _dcd.ep[ep_id][0].disable && _dcd.ep[ep_id][1].disable );
tu_memclr(_dcd.ep[ep_id], 2*sizeof(ep_cmd_sts_t));
_dcd.ep[ep_id][0].is_iso = (p_endpoint_desc->bmAttributes.xfer == TUSB_XFER_ISOCHRONOUS);
// Enable EP interrupt
dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs;
dcd_reg->INTEN |= TU_BIT(ep_id);
return true;
}
static void prepare_setup_packet(uint8_t rhport)
{
if (_dcd_controller[rhport].max_speed == TUSB_SPEED_FULL )
{
_dcd.ep[0][1].buffer_fs.offset = get_buf_offset(_dcd.setup_packet);;
}else
{
_dcd.ep[0][1].buffer_hs.offset = get_buf_offset(_dcd.setup_packet);;
}
}
static void prepare_ep_xfer(uint8_t rhport, uint8_t ep_id, uint16_t buf_offset, uint16_t total_bytes)
{
uint16_t nbytes;
if (_dcd_controller[rhport].max_speed == TUSB_SPEED_FULL )
{
// TODO ISO FullSpeed can have up to 1023 bytes
nbytes = tu_min16(total_bytes, NBYTES_CBI_FULLSPEED_MAX);
_dcd.ep[ep_id][0].buffer_fs.offset = buf_offset;
_dcd.ep[ep_id][0].buffer_fs.nbytes = nbytes;
}else
{
nbytes = tu_min16(total_bytes, NBYTES_CBI_HIGHSPEED_MAX);
_dcd.ep[ep_id][0].buffer_hs.offset = buf_offset;
_dcd.ep[ep_id][0].buffer_hs.nbytes = nbytes;
}
_dcd.dma[ep_id].nbytes = nbytes;
_dcd.ep[ep_id][0].active = 1;
}
bool dcd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t* buffer, uint16_t total_bytes)
{
(void) rhport;
uint8_t const ep_id = ep_addr2id(ep_addr);
tu_memclr(&_dcd.dma[ep_id], sizeof(xfer_dma_t));
_dcd.dma[ep_id].total_bytes = total_bytes;
prepare_ep_xfer(rhport, ep_id, get_buf_offset(buffer), total_bytes);
return true;
}
//--------------------------------------------------------------------+
// IRQ
//--------------------------------------------------------------------+
static void bus_reset(uint8_t rhport)
{
tu_memclr(&_dcd, sizeof(dcd_data_t));
// disable all non-control endpoints on bus reset
for(uint8_t ep_id = 2; ep_id < 2*MAX_EP_PAIRS; ep_id++)
{
_dcd.ep[ep_id][0].disable = _dcd.ep[ep_id][1].disable = 1;
}
prepare_setup_packet(rhport);
dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs;
dcd_reg->EPINUSE = 0;
dcd_reg->EPBUFCFG = 0;
dcd_reg->EPSKIP = 0xFFFFFFFF;
dcd_reg->INTSTAT = dcd_reg->INTSTAT; // clear all pending interrupt
dcd_reg->DEVCMDSTAT |= CMDSTAT_SETUP_RECEIVED_MASK; // clear setup received interrupt
dcd_reg->INTEN = INT_DEVICE_STATUS_MASK | TU_BIT(0) | TU_BIT(1); // enable device status & control endpoints
}
static void process_xfer_isr(uint8_t rhport, uint32_t int_status)
{
uint8_t const max_ep = 2*_dcd_controller[rhport].ep_pairs;
for(uint8_t ep_id = 0; ep_id < max_ep; ep_id++ )
{
if ( tu_bit_test(int_status, ep_id) )
{
ep_cmd_sts_t * ep_cs = &_dcd.ep[ep_id][0];
xfer_dma_t* xfer_dma = &_dcd.dma[ep_id];
if ( ep_id == 0 || ep_id == 1)
{
// For control endpoint, we need to manually clear Active bit
ep_cs->active = 0;
}
uint16_t buf_offset;
uint16_t buf_nbytes;
if (_dcd_controller[rhport].max_speed == TUSB_SPEED_FULL)
{
buf_offset = ep_cs->buffer_fs.offset;
buf_nbytes = ep_cs->buffer_fs.nbytes;
}else
{
buf_offset = ep_cs->buffer_hs.offset;
buf_nbytes = ep_cs->buffer_hs.nbytes;
}
xfer_dma->xferred_bytes += xfer_dma->nbytes - buf_nbytes;
if ( (buf_nbytes == 0) && (xfer_dma->total_bytes > xfer_dma->xferred_bytes) )
{
// There is more data to transfer
// buff_offset has been already increased by hw to correct value for next transfer
prepare_ep_xfer(rhport, ep_id, buf_offset, xfer_dma->total_bytes - xfer_dma->xferred_bytes);
}
else
{
// for detecting ZLP
xfer_dma->total_bytes = xfer_dma->xferred_bytes;
uint8_t const ep_addr = tu_edpt_addr(ep_id / 2, ep_id & 0x01);
// TODO no way determine if the transfer is failed or not
dcd_event_xfer_complete(rhport, ep_addr, xfer_dma->xferred_bytes, XFER_RESULT_SUCCESS, true);
}
}
}
}
void dcd_int_handler(uint8_t rhport)
{
dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs;
uint32_t const cmd_stat = dcd_reg->DEVCMDSTAT;
uint32_t int_status = dcd_reg->INTSTAT & dcd_reg->INTEN;
dcd_reg->INTSTAT = int_status; // Acknowledge handled interrupt
if (int_status == 0) return;
//------------- Device Status -------------//
if ( int_status & INT_DEVICE_STATUS_MASK )
{
dcd_reg->DEVCMDSTAT |= CMDSTAT_RESET_CHANGE_MASK | CMDSTAT_CONNECT_CHANGE_MASK | CMDSTAT_SUSPEND_CHANGE_MASK;
if ( cmd_stat & CMDSTAT_RESET_CHANGE_MASK) // bus reset
{
bus_reset(rhport);
tusb_speed_t speed = TUSB_SPEED_FULL;
if (_dcd_controller[rhport].max_speed == TUSB_SPEED_HIGH)
{
// 0 : reserved, 1 : full, 2 : high, 3: super
if ( 2 == ((cmd_stat >> CMDSTAT_SPEED_SHIFT) & 0x3UL) )
{
speed= TUSB_SPEED_HIGH;
}
}
dcd_event_bus_reset(rhport, speed, true);
}
if (cmd_stat & CMDSTAT_CONNECT_CHANGE_MASK)
{
// device disconnect
if (cmd_stat & CMDSTAT_DEVICE_ADDR_MASK)
{
// debouncing as this can be set when device is powering
dcd_event_bus_signal(rhport, DCD_EVENT_UNPLUGGED, true);
}
}
// TODO support suspend & resume
if (cmd_stat & CMDSTAT_SUSPEND_CHANGE_MASK)
{
if (cmd_stat & CMDSTAT_DEVICE_SUSPEND_MASK)
{ // suspend signal, bus idle for more than 3ms
// Note: Host may delay more than 3 ms before and/or after bus reset before doing enumeration.
if (cmd_stat & CMDSTAT_DEVICE_ADDR_MASK)
{
dcd_event_bus_signal(rhport, DCD_EVENT_SUSPEND, true);
}
}
}
// else
// { // resume signal
// dcd_event_bus_signal(rhport, DCD_EVENT_RESUME, true);
// }
// }
}
// Setup Receive
if ( tu_bit_test(int_status, 0) && (cmd_stat & CMDSTAT_SETUP_RECEIVED_MASK) )
{
// Follow UM flowchart to clear Active & Stall on both Control IN/OUT endpoints
_dcd.ep[0][0].active = _dcd.ep[1][0].active = 0;
_dcd.ep[0][0].stall = _dcd.ep[1][0].stall = 0;
dcd_reg->DEVCMDSTAT |= CMDSTAT_SETUP_RECEIVED_MASK;
dcd_event_setup_received(rhport, _dcd.setup_packet, true);
// keep waiting for next setup
prepare_setup_packet(rhport);
// clear bit0
int_status = tu_bit_clear(int_status, 0);
}
// Endpoint transfer complete interrupt
process_xfer_isr(rhport, int_status);
}
#endif

View File

@@ -0,0 +1,136 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2021, Ha Thach (tinyusb.org)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#ifndef COMMON_TRANSDIMENSION_H_
#define COMMON_TRANSDIMENSION_H_
#ifdef __cplusplus
extern "C" {
#endif
// USBCMD
enum {
USBCMD_RUN_STOP = TU_BIT(0),
USBCMD_RESET = TU_BIT(1),
USBCMD_SETUP_TRIPWIRE = TU_BIT(13),
USBCMD_ADD_QTD_TRIPWIRE = TU_BIT(14) ///< This bit is used as a semaphore to ensure the to proper addition of a new dTD to an active (primed) endpoints linked list. This bit is set and cleared by software during the process of adding a new dTD
// Interrupt Threshold bit 23:16
};
// PORTSC1
#define PORTSC1_PORT_SPEED_POS 26
enum {
PORTSC1_CURRENT_CONNECT_STATUS = TU_BIT(0),
PORTSC1_FORCE_PORT_RESUME = TU_BIT(6),
PORTSC1_SUSPEND = TU_BIT(7),
PORTSC1_FORCE_FULL_SPEED = TU_BIT(24),
PORTSC1_PORT_SPEED = TU_BIT(26) | TU_BIT(27)
};
// OTGSC
enum {
OTGSC_VBUS_DISCHARGE = TU_BIT(0),
OTGSC_VBUS_CHARGE = TU_BIT(1),
// OTGSC_HWASSIST_AUTORESET = TU_BIT(2),
OTGSC_OTG_TERMINATION = TU_BIT(3), ///< Must set to 1 when OTG go to device mode
OTGSC_DATA_PULSING = TU_BIT(4),
OTGSC_ID_PULLUP = TU_BIT(5),
// OTGSC_HWASSIT_DATA_PULSE = TU_BIT(6),
// OTGSC_HWASSIT_BDIS_ACONN = TU_BIT(7),
OTGSC_ID = TU_BIT(8), ///< 0 = A device, 1 = B Device
OTGSC_A_VBUS_VALID = TU_BIT(9),
OTGSC_A_SESSION_VALID = TU_BIT(10),
OTGSC_B_SESSION_VALID = TU_BIT(11),
OTGSC_B_SESSION_END = TU_BIT(12),
OTGSC_1MS_TOGGLE = TU_BIT(13),
OTGSC_DATA_BUS_PULSING_STATUS = TU_BIT(14),
};
// USBMode
enum {
USBMODE_CM_DEVICE = 2,
USBMODE_CM_HOST = 3,
USBMODE_SLOM = TU_BIT(3),
USBMODE_SDIS = TU_BIT(4),
USBMODE_VBUS_POWER_SELECT = TU_BIT(5), // Need to be enabled for LPC18XX/43XX in host mode
};
// Device Registers
typedef struct
{
//------------- ID + HW Parameter Registers-------------//
__I uint32_t TU_RESERVED[64]; ///< For iMX RT10xx, but not used by LPC18XX/LPC43XX
//------------- Capability Registers-------------//
__I uint8_t CAPLENGTH; ///< Capability Registers Length
__I uint8_t TU_RESERVED[1];
__I uint16_t HCIVERSION; ///< Host Controller Interface Version
__I uint32_t HCSPARAMS; ///< Host Controller Structural Parameters
__I uint32_t HCCPARAMS; ///< Host Controller Capability Parameters
__I uint32_t TU_RESERVED[5];
__I uint16_t DCIVERSION; ///< Device Controller Interface Version
__I uint8_t TU_RESERVED[2];
__I uint32_t DCCPARAMS; ///< Device Controller Capability Parameters
__I uint32_t TU_RESERVED[6];
//------------- Operational Registers -------------//
__IO uint32_t USBCMD; ///< USB Command Register
__IO uint32_t USBSTS; ///< USB Status Register
__IO uint32_t USBINTR; ///< Interrupt Enable Register
__IO uint32_t FRINDEX; ///< USB Frame Index
__I uint32_t TU_RESERVED;
__IO uint32_t DEVICEADDR; ///< Device Address
__IO uint32_t ENDPTLISTADDR; ///< Endpoint List Address
__I uint32_t TU_RESERVED;
__IO uint32_t BURSTSIZE; ///< Programmable Burst Size
__IO uint32_t TXFILLTUNING; ///< TX FIFO Fill Tuning
uint32_t TU_RESERVED[4];
__IO uint32_t ENDPTNAK; ///< Endpoint NAK
__IO uint32_t ENDPTNAKEN; ///< Endpoint NAK Enable
__I uint32_t TU_RESERVED;
__IO uint32_t PORTSC1; ///< Port Status & Control
__I uint32_t TU_RESERVED[7];
__IO uint32_t OTGSC; ///< On-The-Go Status & control
__IO uint32_t USBMODE; ///< USB Device Mode
__IO uint32_t ENDPTSETUPSTAT; ///< Endpoint Setup Status
__IO uint32_t ENDPTPRIME; ///< Endpoint Prime
__IO uint32_t ENDPTFLUSH; ///< Endpoint Flush
__I uint32_t ENDPTSTAT; ///< Endpoint Status
__IO uint32_t ENDPTCOMPLETE; ///< Endpoint Complete
__IO uint32_t ENDPTCTRL[8]; ///< Endpoint Control 0 - 7
} dcd_registers_t, hcd_registers_t;
#ifdef __cplusplus
}
#endif
#endif /* COMMON_TRANSDIMENSION_H_ */

View File

@@ -0,0 +1,492 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2019 Ha Thach (tinyusb.org)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
#if TUSB_OPT_DEVICE_ENABLED && \
(CFG_TUSB_MCU == OPT_MCU_LPC18XX || CFG_TUSB_MCU == OPT_MCU_LPC43XX || CFG_TUSB_MCU == OPT_MCU_MIMXRT10XX)
//--------------------------------------------------------------------+
// INCLUDE
//--------------------------------------------------------------------+
#if CFG_TUSB_MCU == OPT_MCU_MIMXRT10XX
#include "fsl_device_registers.h"
#define INCLUDE_FSL_DEVICE_REGISTERS
#else
// LPCOpen for 18xx & 43xx
#include "chip.h"
#endif
#include "common/tusb_common.h"
#include "device/dcd.h"
#include "common_transdimension.h"
#if defined(__CORTEX_M) && __CORTEX_M == 7 && __DCACHE_PRESENT == 1
#define CleanInvalidateDCache_by_Addr SCB_CleanInvalidateDCache_by_Addr
#else
#define CleanInvalidateDCache_by_Addr(_addr, _dsize)
#endif
//--------------------------------------------------------------------+
// MACRO CONSTANT TYPEDEF
//--------------------------------------------------------------------+
// ENDPTCTRL
enum {
ENDPTCTRL_STALL = TU_BIT(0),
ENDPTCTRL_TOGGLE_INHIBIT = TU_BIT(5), ///< used for test only
ENDPTCTRL_TOGGLE_RESET = TU_BIT(6),
ENDPTCTRL_ENABLE = TU_BIT(7)
};
// USBSTS, USBINTR
enum {
INTR_USB = TU_BIT(0),
INTR_ERROR = TU_BIT(1),
INTR_PORT_CHANGE = TU_BIT(2),
INTR_RESET = TU_BIT(6),
INTR_SOF = TU_BIT(7),
INTR_SUSPEND = TU_BIT(8),
INTR_NAK = TU_BIT(16)
};
// Queue Transfer Descriptor
typedef struct
{
// Word 0: Next QTD Pointer
uint32_t next; ///< Next link pointer This field contains the physical memory address of the next dTD to be processed
// Word 1: qTQ Token
uint32_t : 3 ;
volatile uint32_t xact_err : 1 ;
uint32_t : 1 ;
volatile uint32_t buffer_err : 1 ;
volatile uint32_t halted : 1 ;
volatile uint32_t active : 1 ;
uint32_t : 2 ;
uint32_t iso_mult_override : 2 ; ///< This field can be used for transmit ISOs to override the MULT field in the dQH. This field must be zero for all packet types that are not transmit-ISO.
uint32_t : 3 ;
uint32_t int_on_complete : 1 ;
volatile uint32_t total_bytes : 15 ;
uint32_t : 0 ;
// Word 2-6: Buffer Page Pointer List, Each element in the list is a 4K page aligned, physical memory address. The lower 12 bits in each pointer are reserved (except for the first one) as each memory pointer must reference the start of a 4K page
uint32_t buffer[5]; ///< buffer1 has frame_n for TODO Isochronous
//------------- DCD Area -------------//
uint16_t expected_bytes;
uint8_t reserved[2];
} dcd_qtd_t;
TU_VERIFY_STATIC( sizeof(dcd_qtd_t) == 32, "size is not correct");
// Queue Head
typedef struct
{
// Word 0: Capabilities and Characteristics
uint32_t : 15 ; ///< Number of packets executed per transaction descriptor 00 - Execute N transactions as demonstrated by the USB variable length protocol where N is computed using Max_packet_length and the Total_bytes field in the dTD. 01 - Execute one transaction 10 - Execute two transactions 11 - Execute three transactions Remark: Non-isochronous endpoints must set MULT = 00. Remark: Isochronous endpoints must set MULT = 01, 10, or 11 as needed.
uint32_t int_on_setup : 1 ; ///< Interrupt on setup This bit is used on control type endpoints to indicate if USBINT is set in response to a setup being received.
uint32_t max_package_size : 11 ; ///< This directly corresponds to the maximum packet size of the associated endpoint (wMaxPacketSize)
uint32_t : 2 ;
uint32_t zero_length_termination : 1 ; ///< This bit is used for non-isochronous endpoints to indicate when a zero-length packet is received to terminate transfers in case the total transfer length is “multiple”. 0 - Enable zero-length packet to terminate transfers equal to a multiple of Max_packet_length (default). 1 - Disable zero-length packet on transfers that are equal in length to a multiple Max_packet_length.
uint32_t iso_mult : 2 ; ///<
uint32_t : 0 ;
// Word 1: Current qTD Pointer
volatile uint32_t qtd_addr;
// Word 2-9: Transfer Overlay
volatile dcd_qtd_t qtd_overlay;
// Word 10-11: Setup request (control OUT only)
volatile tusb_control_request_t setup_request;
//--------------------------------------------------------------------+
/// Due to the fact QHD is 64 bytes aligned but occupies only 48 bytes
/// thus there are 16 bytes padding free that we can make use of.
//--------------------------------------------------------------------+
uint8_t reserved[16];
} dcd_qhd_t;
TU_VERIFY_STATIC( sizeof(dcd_qhd_t) == 64, "size is not correct");
//--------------------------------------------------------------------+
// Variables
//--------------------------------------------------------------------+
typedef struct
{
dcd_registers_t* regs; // registers
const IRQn_Type irqnum; // IRQ number
const uint8_t ep_count; // Max bi-directional Endpoints
}dcd_controller_t;
#if CFG_TUSB_MCU == OPT_MCU_MIMXRT10XX
// Each endpoint with direction (IN/OUT) occupies a queue head
// Therefore QHD_MAX is 2 x max endpoint count
#define QHD_MAX (8*2)
static const dcd_controller_t _dcd_controller[] =
{
// RT1010 and RT1020 only has 1 USB controller
#if FSL_FEATURE_SOC_USBHS_COUNT == 1
{ .regs = (dcd_registers_t*) USB_BASE , .irqnum = USB_OTG1_IRQn, .ep_count = 8 }
#else
{ .regs = (dcd_registers_t*) USB1_BASE, .irqnum = USB_OTG1_IRQn, .ep_count = 8 },
{ .regs = (dcd_registers_t*) USB2_BASE, .irqnum = USB_OTG2_IRQn, .ep_count = 8 }
#endif
};
#else
#define QHD_MAX (6*2)
static const dcd_controller_t _dcd_controller[] =
{
{ .regs = (dcd_registers_t*) LPC_USB0_BASE, .irqnum = USB0_IRQn, .ep_count = 6 },
{ .regs = (dcd_registers_t*) LPC_USB1_BASE, .irqnum = USB1_IRQn, .ep_count = 4 }
};
#endif
#define QTD_NEXT_INVALID 0x01
typedef struct {
// Must be at 2K alignment
dcd_qhd_t qhd[QHD_MAX] TU_ATTR_ALIGNED(64);
dcd_qtd_t qtd[QHD_MAX] TU_ATTR_ALIGNED(32); // for portability, TinyUSB only queue 1 TD for each Qhd
}dcd_data_t;
CFG_TUSB_MEM_SECTION TU_ATTR_ALIGNED(2048)
static dcd_data_t _dcd_data;
//--------------------------------------------------------------------+
// Controller API
//--------------------------------------------------------------------+
/// follows LPC43xx User Manual 23.10.3
static void bus_reset(uint8_t rhport)
{
dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs;
// The reset value for all endpoint types is the control endpoint. If one endpoint
// direction is enabled and the paired endpoint of opposite direction is disabled, then the
// endpoint type of the unused direction must be changed from the control type to any other
// type (e.g. bulk). Leaving an un-configured endpoint control will cause undefined behavior
// for the data PID tracking on the active endpoint.
for( int i=1; i < _dcd_controller[rhport].ep_count; i++)
{
dcd_reg->ENDPTCTRL[i] = (TUSB_XFER_BULK << 2) | (TUSB_XFER_BULK << 18);
}
//------------- Clear All Registers -------------//
dcd_reg->ENDPTNAK = dcd_reg->ENDPTNAK;
dcd_reg->ENDPTNAKEN = 0;
dcd_reg->USBSTS = dcd_reg->USBSTS;
dcd_reg->ENDPTSETUPSTAT = dcd_reg->ENDPTSETUPSTAT;
dcd_reg->ENDPTCOMPLETE = dcd_reg->ENDPTCOMPLETE;
while (dcd_reg->ENDPTPRIME) {}
dcd_reg->ENDPTFLUSH = 0xFFFFFFFF;
while (dcd_reg->ENDPTFLUSH) {}
// read reset bit in portsc
//------------- Queue Head & Queue TD -------------//
tu_memclr(&_dcd_data, sizeof(dcd_data_t));
//------------- Set up Control Endpoints (0 OUT, 1 IN) -------------//
_dcd_data.qhd[0].zero_length_termination = _dcd_data.qhd[1].zero_length_termination = 1;
_dcd_data.qhd[0].max_package_size = _dcd_data.qhd[1].max_package_size = CFG_TUD_ENDPOINT0_SIZE;
_dcd_data.qhd[0].qtd_overlay.next = _dcd_data.qhd[1].qtd_overlay.next = QTD_NEXT_INVALID;
_dcd_data.qhd[0].int_on_setup = 1; // OUT only
}
void dcd_init(uint8_t rhport)
{
tu_memclr(&_dcd_data, sizeof(dcd_data_t));
dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs;
// Reset controller
dcd_reg->USBCMD |= USBCMD_RESET;
while( dcd_reg->USBCMD & USBCMD_RESET ) {}
// Set mode to device, must be set immediately after reset
dcd_reg->USBMODE = USBMODE_CM_DEVICE;
dcd_reg->OTGSC = OTGSC_VBUS_DISCHARGE | OTGSC_OTG_TERMINATION;
// TODO Force fullspeed on non-highspeed port
// dcd_reg->PORTSC1 = PORTSC1_FORCE_FULL_SPEED;
CleanInvalidateDCache_by_Addr((uint32_t*) &_dcd_data, sizeof(dcd_data_t));
dcd_reg->ENDPTLISTADDR = (uint32_t) _dcd_data.qhd; // Endpoint List Address has to be 2K alignment
dcd_reg->USBSTS = dcd_reg->USBSTS;
dcd_reg->USBINTR = INTR_USB | INTR_ERROR | INTR_PORT_CHANGE | INTR_RESET | INTR_SUSPEND /*| INTR_SOF*/;
dcd_reg->USBCMD &= ~0x00FF0000; // Interrupt Threshold Interval = 0
dcd_reg->USBCMD |= USBCMD_RUN_STOP; // Connect
}
void dcd_int_enable(uint8_t rhport)
{
NVIC_EnableIRQ(_dcd_controller[rhport].irqnum);
}
void dcd_int_disable(uint8_t rhport)
{
NVIC_DisableIRQ(_dcd_controller[rhport].irqnum);
}
void dcd_set_address(uint8_t rhport, uint8_t dev_addr)
{
// Response with status first before changing device address
dcd_edpt_xfer(rhport, tu_edpt_addr(0, TUSB_DIR_IN), NULL, 0);
dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs;
dcd_reg->DEVICEADDR = (dev_addr << 25) | TU_BIT(24);
}
void dcd_remote_wakeup(uint8_t rhport)
{
(void) rhport;
}
void dcd_connect(uint8_t rhport)
{
dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs;
dcd_reg->USBCMD |= USBCMD_RUN_STOP;
}
void dcd_disconnect(uint8_t rhport)
{
dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs;
dcd_reg->USBCMD &= ~USBCMD_RUN_STOP;
}
//--------------------------------------------------------------------+
// HELPER
//--------------------------------------------------------------------+
// index to bit position in register
static inline uint8_t ep_idx2bit(uint8_t ep_idx)
{
return ep_idx/2 + ( (ep_idx%2) ? 16 : 0);
}
static void qtd_init(dcd_qtd_t* p_qtd, void * data_ptr, uint16_t total_bytes)
{
tu_memclr(p_qtd, sizeof(dcd_qtd_t));
p_qtd->next = QTD_NEXT_INVALID;
p_qtd->active = 1;
p_qtd->total_bytes = p_qtd->expected_bytes = total_bytes;
if (data_ptr != NULL)
{
p_qtd->buffer[0] = (uint32_t) data_ptr;
for(uint8_t i=1; i<5; i++)
{
p_qtd->buffer[i] |= tu_align4k( p_qtd->buffer[i-1] ) + 4096;
}
}
}
//--------------------------------------------------------------------+
// DCD Endpoint Port
//--------------------------------------------------------------------+
void dcd_edpt_stall(uint8_t rhport, uint8_t ep_addr)
{
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs;
dcd_reg->ENDPTCTRL[epnum] |= ENDPTCTRL_STALL << (dir ? 16 : 0);
}
void dcd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr)
{
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
// data toggle also need to be reset
dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs;
dcd_reg->ENDPTCTRL[epnum] |= ENDPTCTRL_TOGGLE_RESET << ( dir ? 16 : 0 );
dcd_reg->ENDPTCTRL[epnum] &= ~(ENDPTCTRL_STALL << ( dir ? 16 : 0));
}
bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const * p_endpoint_desc)
{
// TODO not support ISO yet
TU_VERIFY ( p_endpoint_desc->bmAttributes.xfer != TUSB_XFER_ISOCHRONOUS);
uint8_t const epnum = tu_edpt_number(p_endpoint_desc->bEndpointAddress);
uint8_t const dir = tu_edpt_dir(p_endpoint_desc->bEndpointAddress);
uint8_t const ep_idx = 2*epnum + dir;
// Must not exceed max endpoint number
TU_ASSERT( epnum < _dcd_controller[rhport].ep_count );
//------------- Prepare Queue Head -------------//
dcd_qhd_t * p_qhd = &_dcd_data.qhd[ep_idx];
tu_memclr(p_qhd, sizeof(dcd_qhd_t));
p_qhd->zero_length_termination = 1;
p_qhd->max_package_size = p_endpoint_desc->wMaxPacketSize.size;
p_qhd->qtd_overlay.next = QTD_NEXT_INVALID;
CleanInvalidateDCache_by_Addr((uint32_t*) &_dcd_data, sizeof(dcd_data_t));
// Enable EP Control
dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs;
dcd_reg->ENDPTCTRL[epnum] |= ((p_endpoint_desc->bmAttributes.xfer << 2) | ENDPTCTRL_ENABLE | ENDPTCTRL_TOGGLE_RESET) << (dir ? 16 : 0);
return true;
}
bool dcd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes)
{
dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
uint8_t const ep_idx = 2*epnum + dir;
if ( epnum == 0 )
{
// follows UM 24.10.8.1.1 Setup packet handling using setup lockout mechanism
// wait until ENDPTSETUPSTAT before priming data/status in response TODO add time out
while(dcd_reg->ENDPTSETUPSTAT & TU_BIT(0)) {}
}
dcd_qhd_t * p_qhd = &_dcd_data.qhd[ep_idx];
dcd_qtd_t * p_qtd = &_dcd_data.qtd[ep_idx];
// Force the CPU to flush the buffer. We increase the size by 32 because the call aligns the
// address to 32-byte boundaries.
// void* cast to suppress cast-align warning, buffer must be
CleanInvalidateDCache_by_Addr((uint32_t*) tu_align((uint32_t) buffer, 4), total_bytes + 31);
//------------- Prepare qtd -------------//
qtd_init(p_qtd, buffer, total_bytes);
p_qtd->int_on_complete = true;
p_qhd->qtd_overlay.next = (uint32_t) p_qtd; // link qtd to qhd
CleanInvalidateDCache_by_Addr((uint32_t*) &_dcd_data, sizeof(dcd_data_t));
// start transfer
dcd_reg->ENDPTPRIME = TU_BIT( ep_idx2bit(ep_idx) ) ;
return true;
}
//--------------------------------------------------------------------+
// ISR
//--------------------------------------------------------------------+
void dcd_int_handler(uint8_t rhport)
{
dcd_registers_t* const dcd_reg = _dcd_controller[rhport].regs;
uint32_t const int_enable = dcd_reg->USBINTR;
uint32_t const int_status = dcd_reg->USBSTS & int_enable;
dcd_reg->USBSTS = int_status; // Acknowledge handled interrupt
// disabled interrupt sources
if (int_status == 0) return;
if (int_status & INTR_RESET)
{
bus_reset(rhport);
uint32_t speed = (dcd_reg->PORTSC1 & PORTSC1_PORT_SPEED) >> PORTSC1_PORT_SPEED_POS;
dcd_event_bus_reset(rhport, (tusb_speed_t) speed, true);
}
if (int_status & INTR_SUSPEND)
{
if (dcd_reg->PORTSC1 & PORTSC1_SUSPEND)
{
// Note: Host may delay more than 3 ms before and/or after bus reset before doing enumeration.
if ((dcd_reg->DEVICEADDR >> 25) & 0x0f)
{
dcd_event_bus_signal(rhport, DCD_EVENT_SUSPEND, true);
}
}
}
// Make sure we read the latest version of _dcd_data.
CleanInvalidateDCache_by_Addr((uint32_t*) &_dcd_data, sizeof(dcd_data_t));
// TODO disconnection does not generate interrupt !!!!!!
// if (int_status & INTR_PORT_CHANGE)
// {
// if ( !(dcd_reg->PORTSC1 & PORTSC1_CURRENT_CONNECT_STATUS) )
// {
// dcd_event_t event = { .rhport = rhport, .event_id = DCD_EVENT_UNPLUGGED };
// dcd_event_handler(&event, true);
// }
// }
if (int_status & INTR_USB)
{
uint32_t const edpt_complete = dcd_reg->ENDPTCOMPLETE;
dcd_reg->ENDPTCOMPLETE = edpt_complete; // acknowledge
if (dcd_reg->ENDPTSETUPSTAT)
{
//------------- Set up Received -------------//
// 23.10.10.2 Operational model for setup transfers
dcd_reg->ENDPTSETUPSTAT = dcd_reg->ENDPTSETUPSTAT;// acknowledge
dcd_event_setup_received(rhport, (uint8_t*) &_dcd_data.qhd[0].setup_request, true);
}
if ( edpt_complete )
{
for(uint8_t ep_idx = 0; ep_idx < QHD_MAX; ep_idx++)
{
if ( tu_bit_test(edpt_complete, ep_idx2bit(ep_idx)) )
{
// 23.10.12.3 Failed QTD also get ENDPTCOMPLETE set
dcd_qtd_t * p_qtd = &_dcd_data.qtd[ep_idx];
uint8_t result = p_qtd->halted ? XFER_RESULT_STALLED :
( p_qtd->xact_err ||p_qtd->buffer_err ) ? XFER_RESULT_FAILED : XFER_RESULT_SUCCESS;
uint8_t const ep_addr = (ep_idx/2) | ( (ep_idx & 0x01) ? TUSB_DIR_IN_MASK : 0 );
dcd_event_xfer_complete(rhport, ep_addr, p_qtd->expected_bytes - p_qtd->total_bytes, result, true); // only number of bytes in the IOC qtd
}
}
}
}
if (int_status & INTR_SOF)
{
dcd_event_bus_signal(rhport, DCD_EVENT_SOF, true);
}
if (int_status & INTR_NAK) {}
if (int_status & INTR_ERROR) TU_ASSERT(false, );
}
#endif

View File

@@ -0,0 +1,117 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2019 Ha Thach (tinyusb.org)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
// NXP Trans-Dimension USB IP implement EHCI for host functionality
#if TUSB_OPT_HOST_ENABLED && \
(CFG_TUSB_MCU == OPT_MCU_LPC18XX || CFG_TUSB_MCU == OPT_MCU_LPC43XX || CFG_TUSB_MCU == OPT_MCU_MIMXRT10XX)
//--------------------------------------------------------------------+
// INCLUDE
//--------------------------------------------------------------------+
#if CFG_TUSB_MCU == OPT_MCU_MIMXRT10XX
#include "fsl_device_registers.h"
#else
// LPCOpen for 18xx & 43xx
#include "chip.h"
#endif
#include "common/tusb_common.h"
#include "common_transdimension.h"
#include "portable/ehci/ehci_api.h"
//--------------------------------------------------------------------+
// MACRO CONSTANT TYPEDEF
//--------------------------------------------------------------------+
// TODO can be merged with dcd_controller_t
typedef struct
{
uint32_t regs_base; // registers base
const IRQn_Type irqnum; // IRQ number
}hcd_controller_t;
#if CFG_TUSB_MCU == OPT_MCU_MIMXRT10XX
static const hcd_controller_t _hcd_controller[] =
{
// RT1010 and RT1020 only has 1 USB controller
#if FSL_FEATURE_SOC_USBHS_COUNT == 1
{ .regs_base = USB_BASE , .irqnum = USB_OTG1_IRQn }
#else
{ .regs_base = USB1_BASE, .irqnum = USB_OTG1_IRQn },
{ .regs_base = USB2_BASE, .irqnum = USB_OTG2_IRQn }
#endif
};
#else
static const hcd_controller_t _hcd_controller[] =
{
{ .regs_base = LPC_USB0_BASE, .irqnum = USB0_IRQn },
{ .regs_base = LPC_USB1_BASE, .irqnum = USB1_IRQn }
};
#endif
//--------------------------------------------------------------------+
// Controller API
//--------------------------------------------------------------------+
bool hcd_init(uint8_t rhport)
{
hcd_registers_t* hcd_reg = (hcd_registers_t*) _hcd_controller[rhport].regs_base;
// Reset controller
hcd_reg->USBCMD |= USBCMD_RESET;
while( hcd_reg->USBCMD & USBCMD_RESET ) {}
// Set mode to device, must be set immediately after reset
#if CFG_TUSB_MCU == OPT_MCU_LPC18XX || CFG_TUSB_MCU == OPT_MCU_LPC43XX
// LPC18XX/43XX need to set VBUS Power Select to HIGH
// RHPORT1 is fullspeed only (need external PHY for Highspeed)
hcd_reg->USBMODE = USBMODE_CM_HOST | USBMODE_VBUS_POWER_SELECT;
if (rhport == 1) hcd_reg->PORTSC1 |= PORTSC1_FORCE_FULL_SPEED;
#else
hcd_reg->USBMODE = USBMODE_CM_HOST;
#endif
// FIXME force full speed, still have issue with Highspeed enumeration
hcd_reg->PORTSC1 |= PORTSC1_FORCE_FULL_SPEED;
return ehci_init(rhport, (uint32_t) &hcd_reg->CAPLENGTH, (uint32_t) &hcd_reg->USBCMD);
}
void hcd_int_enable(uint8_t rhport)
{
NVIC_EnableIRQ(_hcd_controller[rhport].irqnum);
}
void hcd_int_disable(uint8_t rhport)
{
NVIC_DisableIRQ(_hcd_controller[rhport].irqnum);
}
#endif