Merge pull request #23 from tahnok/totp

Add initial TOTP watch face impl
This commit is contained in:
joeycastillo 2021-11-24 12:26:16 -05:00 committed by GitHub
commit 4a71def034
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
13 changed files with 552 additions and 0 deletions

View File

@ -0,0 +1,21 @@
MIT License
Copyright (c) 2019 Weravech
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@ -0,0 +1,57 @@
TOTP Pure C Library for ALL MCU
====================
Library to generate Time-based One-Time Passwords.
Implements the Time-based One-Time Password algorithm specified in [RFC 6238](https://tools.ietf.org/html/rfc6238).
Supports different time steps and is compatible with tokens that use the same standard (including software ones, like the Google Authenticator app).
Tested on MCUs: MSP430, RP2040
Installation & usage:
--------------------
First include header to your file
```
#include <totp.h>
```
After included, define key ex. Key is ```MyLegoDoor```
- Note: The format of hmacKey is array of hexadecimal bytes.
- Most websites provide the key encoded in base32 - RFC3548/RFC4648, either upper or lower case. You can use [this site](https://cryptii.com/pipes/base32-to-hex) to convert the base32 string to hex (make sure you upcase it first if it's lowercase and remove all whitespaces).
```
uint8_t hmacKey[] = {0x4d, 0x79, 0x4c, 0x65, 0x67, 0x6f, 0x44, 0x6f, 0x6f, 0x72}; // Secret key
```
Instantiate the TOTP class by providing the secret hmacKey, the length of the hmacKey and the Timestep between codes.
```
TOTP(hmacKey, 10, 30); // Secret key, Secret key length, Timestep (30s)
```
Use the ```getCodeFromTimestamp()``` function to get a TOTP from a unix epoch timestamp
```
uint32_t newCode = getCodeFromTimestamp(1557414000); // Current timestamp since Unix epoch in seconds
```
Or ```getCodeFromTimeStruct()``` if you want to get a TOTP from a tm struct (Time Struct in C),
```
struct tm datetime;
datetime.tm_hour = 9;
datetime.tm_min = 0;
datetime.tm_sec = 0;
datetime.tm_mday = 13;
datetime.tm_mon = 5;
datetime.tm_year = 2019;
uint32_t newCode = getCodeFromTimeStruct(datetime);
```
If the provided unix timestamp isn't in UTC±0, use ```setTimezone()``` before ```getCodeFromTimestamp()``` or ```getCodeFromTimeStruct()``` to offset the time.
```
setTimezone(9); // Set timezone +9 Japan
```
You can see an example in blink.c
Thanks to:
----------
* Jose Damico, https://github.com/damico/ARDUINO-OATH-TOKEN
* Peter Knight, https://github.com/Cathedrow/Cryptosuite
* Maniacbug, https://github.com/maniacbug/Cryptosuite
* lucadentella, https://github.com/lucadentella/TOTP-Arduino

View File

@ -0,0 +1,69 @@
#include "TOTP.h"
#include "sha1.h"
uint8_t* _hmacKey;
uint8_t _keyLength;
uint8_t _timeZoneOffset;
uint32_t _timeStep;
// Init the library with the private key, its length and the timeStep duration
void TOTP(uint8_t* hmacKey, uint8_t keyLength, uint32_t timeStep) {
_hmacKey = hmacKey;
_keyLength = keyLength;
_timeStep = timeStep;
}
void setTimezone(uint8_t timezone){
_timeZoneOffset = timezone;
}
uint32_t TimeStruct2Timestamp(struct tm time){
//time.tm_mon -= 1;
//time.tm_year -= 1900;
return mktime(&(time)) - (_timeZoneOffset * 3600) - 2208988800;
}
// Generate a code, using the timestamp provided
uint32_t getCodeFromTimestamp(uint32_t timeStamp) {
uint32_t steps = timeStamp / _timeStep;
return getCodeFromSteps(steps);
}
// Generate a code, using the timestamp provided
uint32_t getCodeFromTimeStruct(struct tm time) {
return getCodeFromTimestamp(TimeStruct2Timestamp(time));
}
// Generate a code, using the number of steps provided
uint32_t getCodeFromSteps(uint32_t steps) {
// STEP 0, map the number of steps in a 8-bytes array (counter value)
uint8_t _byteArray[8];
_byteArray[0] = 0x00;
_byteArray[1] = 0x00;
_byteArray[2] = 0x00;
_byteArray[3] = 0x00;
_byteArray[4] = (uint8_t)((steps >> 24) & 0xFF);
_byteArray[5] = (uint8_t)((steps >> 16) & 0xFF);
_byteArray[6] = (uint8_t)((steps >> 8) & 0XFF);
_byteArray[7] = (uint8_t)((steps & 0XFF));
// STEP 1, get the HMAC-SHA1 hash from counter and key
initHmac(_hmacKey, _keyLength);
writeArray(_byteArray, 8);
uint8_t* _hash = resultHmac();
// STEP 2, apply dynamic truncation to obtain a 4-bytes string
uint32_t _truncatedHash = 0;
uint8_t _offset = _hash[20 - 1] & 0xF;
uint8_t j;
for (j = 0; j < 4; ++j) {
_truncatedHash <<= 8;
_truncatedHash |= _hash[_offset + j];
}
// STEP 3, compute the OTP value
_truncatedHash &= 0x7FFFFFFF; //Disabled
_truncatedHash %= 1000000;
return _truncatedHash;
}

View File

@ -0,0 +1,13 @@
#ifndef TOTP_H_
#define TOTP_H_
#include <inttypes.h>
#include "time.h"
void TOTP(uint8_t* hmacKey, uint8_t keyLength, uint32_t timeStep);
void setTimezone(uint8_t timezone);
uint32_t getCodeFromTimestamp(uint32_t timeStamp);
uint32_t getCodeFromTimeStruct(struct tm time);
uint32_t getCodeFromSteps(uint32_t steps);
#endif // TOTP_H_

View File

@ -0,0 +1,39 @@
#include <msp430.h>
#include <totp.h>
#include <stdint.h>
/**
* blink.c
*/
void main(void)
{
WDTCTL = WDTPW | WDTHOLD; // stop watchdog timer
P1DIR |= 0x01; // configure P1.0 as output
uint8_t hmacKey[] = {0x4d, 0x79, 0x4c, 0x65, 0x67, 0x6f, 0x44, 0x6f, 0x6f, 0x72}; // Secret key
TOTP(hmacKey, 10, 7200); // Secret key, Key length, Timestep (7200s - 2hours)
setTimezone(9); // Set timezone
uint32_t newCode = getCodeFromTimestamp(1557414000); // Timestamp Now
///////////////// For struct tm //////////////////
// struct tm datetime;
// datetime.tm_hour = 9;
// datetime.tm_min = 0;
// datetime.tm_sec = 0;
// datetime.tm_mday = 13;
// datetime.tm_mon = 5;
// datetime.tm_year = 2019;
// uint32_t newCode = getCodeFromTimeStruct(datetime);
///////////////////////////////////////////////////
volatile unsigned int i; // volatile to prevent optimization
while(1)
{
if (newCode == 0){ // 0 = INPUT HERE
P1OUT ^= 0x01; // toggle P1.0
}
for(i=10000; i>0; i--); // delay
}
}

View File

@ -0,0 +1,169 @@
#include <string.h>
#include "sha1.h"
#define SHA1_K0 0x5a827999
#define SHA1_K20 0x6ed9eba1
#define SHA1_K40 0x8f1bbcdc
#define SHA1_K60 0xca62c1d6
uint8_t sha1InitState[] = {
0x01,0x23,0x45,0x67, // H0
0x89,0xab,0xcd,0xef, // H1
0xfe,0xdc,0xba,0x98, // H2
0x76,0x54,0x32,0x10, // H3
0xf0,0xe1,0xd2,0xc3 // H4
};
union _buffer {
uint8_t b[BLOCK_LENGTH];
uint32_t w[BLOCK_LENGTH/4];
} buffer;
union _state {
uint8_t b[HASH_LENGTH];
uint32_t w[HASH_LENGTH/4];
} state;
uint8_t bufferOffset;
uint32_t byteCount;
uint8_t keyBuffer[BLOCK_LENGTH];
uint8_t innerHash[HASH_LENGTH];
void init(void) {
memcpy(state.b,sha1InitState,HASH_LENGTH);
byteCount = 0;
bufferOffset = 0;
}
uint32_t rol32(uint32_t number, uint8_t bits) {
return ((number << bits) | (uint32_t)(number >> (32-bits)));
}
void hashBlock() {
uint8_t i;
uint32_t a,b,c,d,e,t;
a=state.w[0];
b=state.w[1];
c=state.w[2];
d=state.w[3];
e=state.w[4];
for (i=0; i<80; i++) {
if (i>=16) {
t = buffer.w[(i+13)&15] ^ buffer.w[(i+8)&15] ^ buffer.w[(i+2)&15] ^ buffer.w[i&15];
buffer.w[i&15] = rol32(t,1);
}
if (i<20) {
t = (d ^ (b & (c ^ d))) + SHA1_K0;
} else if (i<40) {
t = (b ^ c ^ d) + SHA1_K20;
} else if (i<60) {
t = ((b & c) | (d & (b | c))) + SHA1_K40;
} else {
t = (b ^ c ^ d) + SHA1_K60;
}
t+=rol32(a,5) + e + buffer.w[i&15];
e=d;
d=c;
c=rol32(b,30);
b=a;
a=t;
}
state.w[0] += a;
state.w[1] += b;
state.w[2] += c;
state.w[3] += d;
state.w[4] += e;
}
void addUncounted(uint8_t data) {
buffer.b[bufferOffset ^ 3] = data;
bufferOffset++;
if (bufferOffset == BLOCK_LENGTH) {
hashBlock();
bufferOffset = 0;
}
}
void write(uint8_t data) {
++byteCount;
addUncounted(data);
return;
}
void writeArray(uint8_t *buffer, uint8_t size){
while (size--) {
write(*buffer++);
}
}
void pad() {
// Implement SHA-1 padding (fips180-2 <20><>5.1.1)
// Pad with 0x80 followed by 0x00 until the end of the block
addUncounted(0x80);
while (bufferOffset != 56) addUncounted(0x00);
// Append length in the last 8 bytes
addUncounted(0); // We're only using 32 bit lengths
addUncounted(0); // But SHA-1 supports 64 bit lengths
addUncounted(0); // So zero pad the top bits
addUncounted(byteCount >> 29); // Shifting to multiply by 8
addUncounted(byteCount >> 21); // as SHA-1 supports bitstreams as well as
addUncounted(byteCount >> 13); // byte.
addUncounted(byteCount >> 5);
addUncounted(byteCount << 3);
}
uint8_t* result(void) {
// Pad to complete the last block
pad();
// Swap byte order back
uint8_t i;
for (i=0; i<5; i++) {
uint32_t a,b;
a=state.w[i];
b=a<<24;
b|=(a<<8) & 0x00ff0000;
b|=(a>>8) & 0x0000ff00;
b|=a>>24;
state.w[i]=b;
}
// Return pointer to hash (20 characters)
return state.b;
}
#define HMAC_IPAD 0x36
#define HMAC_OPAD 0x5c
void initHmac(const uint8_t* key, uint8_t keyLength) {
uint8_t i;
memset(keyBuffer,0,BLOCK_LENGTH);
if (keyLength > BLOCK_LENGTH) {
// Hash long keys
init();
for (;keyLength--;) write(*key++);
memcpy(keyBuffer,result(),HASH_LENGTH);
} else {
// Block length keys are used as is
memcpy(keyBuffer,key,keyLength);
}
// Start inner hash
init();
for (i=0; i<BLOCK_LENGTH; i++) {
write(keyBuffer[i] ^ HMAC_IPAD);
}
}
uint8_t* resultHmac(void) {
uint8_t i;
// Complete inner hash
memcpy(innerHash,result(),HASH_LENGTH);
// Calculate outer hash
init();
for (i=0; i<BLOCK_LENGTH; i++) write(keyBuffer[i] ^ HMAC_OPAD);
for (i=0; i<HASH_LENGTH; i++) write(innerHash[i]);
return result();
}

View File

@ -0,0 +1,16 @@
#ifndef SHA1_H_
#define SHA1_H_
#include <inttypes.h>
#define HASH_LENGTH 20
#define BLOCK_LENGTH 64
void init(void);
void initHmac(const uint8_t* secret, uint8_t secretLength);
uint8_t* result(void);
uint8_t* resultHmac(void);
void write(uint8_t);
void writeArray(uint8_t *buffer, uint8_t size);
#endif // SHA1_H

View File

@ -16,6 +16,7 @@ INCLUDES += \
-I../watch_faces/complications/ \
-I../watch_faces/thermistor/ \
-I../watch_faces/demos/ \
-I../lib/TOTP-MCU/ \
# If you add any other source files you wish to compile, add them after ../app.c
# Note that you will need to add a backslash at the end of any line you wish to continue, i.e.
@ -24,6 +25,8 @@ INCLUDES += \
# ../drivers/lis2dh.c \
# ../watch_faces/fitness/step_count_face.c
SRCS += \
../lib/TOTP-MCU/sha1.c \
../lib/TOTP-MCU/TOTP.c \
../movement.c \
../watch_faces/clock/simple_clock_face.c \
../watch_faces/settings/preferences_face.c \
@ -37,6 +40,7 @@ SRCS += \
../watch_faces/complications/beats_face.c \
../watch_faces/complications/day_one_face.c \
../watch_faces/complications/stopwatch_face.c \
../watch_faces/complications/totp_face.c \
# Leave this line at the bottom of the file; it has all the targets for making your project.
include $(TOP)/rules.mk

View File

@ -12,6 +12,7 @@
#include "day_one_face.h"
#include "voltage_face.h"
#include "stopwatch_face.h"
#include "totp_face.h"
const watch_face_t watch_faces[] = {
simple_clock_face,

View File

@ -0,0 +1,81 @@
/**
* TODO:
* - Add support for UTC offset in settings?
* - Support for multiple codes
*/
#include <stdlib.h>
#include <string.h>
#include "totp_face.h"
#include "watch.h"
#include "watch_utility.h"
#include "TOTP.h"
// test key: JBSWY3DPEHPK3PXP
// Use https://cryptii.com/pipes/base32-to-hex to convert base32 to hex
// Use https://totp.danhersam.com/ to generate test codes for verification
static uint8_t hmacKey[] = {0x48, 0x65, 0x6c, 0x6c, 0x6f, 0x21, 0xde, 0xad, 0xbe, 0xef}; // Secret key
static const uint8_t UTC_OFFSET = 5; // set to your current UTC offset
static const uint32_t TIMESTEP = 30;
void totp_face_setup(movement_settings_t *settings, void ** context_ptr) {
(void) settings;
if (*context_ptr == NULL) *context_ptr = malloc(sizeof(totp_state_t));
TOTP(hmacKey, sizeof(hmacKey), TIMESTEP);
}
void totp_face_activate(movement_settings_t *settings, void *context) {
(void) settings;
memset(context, 0, sizeof(totp_state_t));
totp_state_t *totp_state = (totp_state_t *)context;
totp_state->timestamp = watch_utility_date_time_to_unix_time(watch_rtc_get_date_time(), UTC_OFFSET);
totp_state->current_code = getCodeFromTimestamp(totp_state->timestamp);
}
bool totp_face_loop(movement_event_t event, movement_settings_t *settings, void *context) {
(void) settings;
totp_state_t *totp_state = (totp_state_t *)context;
char buf[14];
uint8_t valid_for;
div_t result;
switch (event.event_type) {
case EVENT_TICK:
totp_state->timestamp++;
// fall through
case EVENT_ACTIVATE:
result = div(totp_state->timestamp, TIMESTEP);
if (result.quot != totp_state->steps) {
totp_state->current_code = getCodeFromTimestamp(totp_state->timestamp);
totp_state->steps = result.quot;
}
valid_for = TIMESTEP - result.rem;
sprintf(buf, "2f%2d%06lu", valid_for, totp_state->current_code);
watch_display_string(buf, 0);
break;
case EVENT_MODE_BUTTON_UP:
movement_move_to_next_face();
break;
case EVENT_LIGHT_BUTTON_DOWN:
movement_illuminate_led();
break;
case EVENT_TIMEOUT:
movement_move_to_face(0);
break;
case EVENT_ALARM_BUTTON_DOWN:
case EVENT_ALARM_BUTTON_UP:
case EVENT_ALARM_LONG_PRESS:
default:
break;
}
return true;
}
void totp_face_resign(movement_settings_t *settings, void *context) {
(void) settings;
(void) context;
}

View File

@ -0,0 +1,26 @@
#ifndef TOTP_FACE_H_
#define TOTP_FACE_H_
#include "movement.h"
typedef struct {
uint32_t timestamp;
uint8_t steps;
uint32_t current_code;
} totp_state_t;
void totp_face_setup(movement_settings_t *settings, void ** context_ptr);
void totp_face_activate(movement_settings_t *settings, void *context);
bool totp_face_loop(movement_event_t event, movement_settings_t *settings, void *context);
void totp_face_resign(movement_settings_t *settings, void *context);
static const watch_face_t totp_face = {
totp_face_setup,
totp_face_activate,
totp_face_loop,
totp_face_resign,
NULL
};
#endif // TOTP_FACE_H_

View File

@ -35,6 +35,41 @@ const char * watch_utility_get_weekday(watch_date_time date_time) {
return weekdays[(date_time.unit.day + 13 * (date_time.unit.month + 1) / 5 + date_time.unit.year + date_time.unit.year / 4 + 525) % 7];
}
uint32_t watch_utility_convert_to_unix_time(uint16_t year, uint8_t month, uint8_t day, uint8_t hour, uint8_t minute, uint8_t second, uint32_t utc_offset) {
uint16_t DAYS_SO_FAR[] = {
0, // Jan
31, // Feb
59, // March
90, // April
120, // May
151, // June
181, // July
212, // August
243, // September
273, // October
304, // November
334 // December
};
uint32_t year_adj = year + 4800;
uint32_t febs = year_adj - (month <= 2 ? 1 : 0); /* Februaries since base. */
uint32_t leap_days = 1 + (febs / 4) - (febs / 100) + (febs / 400);
uint32_t days = 365 * year_adj + leap_days + DAYS_SO_FAR[month - 1] + day - 1;
days -= 2472692; /* Adjust to Unix epoch. */
uint32_t timestamp = days * 86400;
timestamp += (hour + utc_offset) * 3600;
timestamp += minute * 60;
timestamp += second;
return timestamp;
}
uint32_t watch_utility_date_time_to_unix_time(watch_date_time date_time, uint32_t utc_offset) {
return watch_utility_convert_to_unix_time(date_time.unit.year + WATCH_RTC_REFERENCE_YEAR, date_time.unit.month, date_time.unit.day, date_time.unit.hour, date_time.unit.minute, date_time.unit.second, utc_offset);
}
float watch_utility_thermistor_temperature(uint16_t value, bool highside, float b_coefficient, float nominal_temperature, float nominal_resistance, float series_resistance) {
float reading = (float)value;

View File

@ -38,6 +38,27 @@
*/
const char * watch_utility_get_weekday(watch_date_time date_time);
/** @brief Returns the UNIX time (seconds since 1970) for a given date/time in UTC.
* @param date_time The watch_date_time that you wish to convert.
* @param year The year of the date you wish to convert.
* @param month The month of the date you wish to convert.
* @param day The day of the date you wish to convert.
* @param hour The hour of the date you wish to convert.
* @param minute The minute of the date you wish to convert.
* @param second The second of the date you wish to convert.
* @return A UNIX timestamp for the given date/time and UTC offset.
* @note Implemented by Wesley Ellis (tahnok) and based on BSD-licensed code by Josh Haberman:
* https://blog.reverberate.org/2020/05/12/optimizing-date-algorithms.html
*/
uint32_t watch_utility_convert_to_unix_time(uint16_t year, uint8_t month, uint8_t day, uint8_t hour, uint8_t minute, uint8_t second, uint32_t utc_offset);
/** @brief Returns the UNIX time (seconds since 1970) for a given watch_date_time struct.
* @param date_time The watch_date_time that you wish to convert.
* @param utc_offset The number of seconds that date_time is offset from UTC, or 0 if the time is UTC.
* @return A UNIX timestamp for the given watch_date_time and UTC offset.
*/
uint32_t watch_utility_date_time_to_unix_time(watch_date_time date_time, uint32_t utc_offset);
/** @brief Returns a temperature in degrees Celsius for a given thermistor voltage divider circuit.
* @param value The raw analog reading from the thermistor pin (0-65535)
* @param highside True if the thermistor is connected to VCC and the series resistor is connected