Moonrise face
This commit is contained in:
297
movement/lib/moonrise/moonrise.c
Normal file
297
movement/lib/moonrise/moonrise.c
Normal file
@@ -0,0 +1,297 @@
|
||||
// Compute times of moonrise and moonset at a specified latitude and longitude.
|
||||
//
|
||||
// This software minimizes computational work by performing the full calculation
|
||||
// of the lunar position three times, at the beginning, middle, and end of the
|
||||
// period of interest. Three point interpolation is used to predict the position
|
||||
// for each hour, and the arithmetic mean is used to predict the half-hour positions.
|
||||
//
|
||||
// The full computational burden is negligible on modern computers, but the
|
||||
// algorithm is effective and still useful for small embedded systems.
|
||||
//
|
||||
// This software was originally adapted to javascript by Stephen R. Schmitt
|
||||
// from a BASIC program from the 'Astronomical Computing' column of Sky & Telescope,
|
||||
// April 1989, page 78.
|
||||
//
|
||||
// Subsequently adapted from Stephen R. Schmitt's javascript to c++ for the Arduino
|
||||
// by Cyrus Rahman.
|
||||
//
|
||||
// Subsequently adapted from Cyrus Rahman's Arduino C++ to C for the Sensor Watch
|
||||
// by hueso, this work is subject to Stephen Schmitt's copyright:
|
||||
//
|
||||
// Copyright 2007 Stephen R. Schmitt
|
||||
// Subsequent work Copyright 2020 Cyrus Rahman
|
||||
// You may use or modify this source code in any way you find useful, provided
|
||||
// that you agree that the author(s) have no warranty, obligations or liability. You
|
||||
// must determine the suitability of this source code for your use.
|
||||
//
|
||||
// Redistributions of this source code must retain this copyright notice.
|
||||
|
||||
#include <math.h>
|
||||
#include <stdbool.h>
|
||||
#include <stdlib.h>
|
||||
#include "moonrise.h"
|
||||
|
||||
#define K1 15*(M_PI/180)*1.0027379
|
||||
|
||||
// Determine the nearest moon rise or set event previous, and the nearest
|
||||
// moon rise or set event subsequent, to the specified time in seconds since the
|
||||
// Unix epoch (January 1, 1970) and at the specified latitude and longitude in
|
||||
// degrees.
|
||||
//
|
||||
// We look for events from MR_WINDOW/2 hours in the past to MR_WINDOW/2 hours
|
||||
// in the future.
|
||||
MoonRise MoonRise_calculate(double latitude, double longitude, time_t t) {
|
||||
MoonRise self;
|
||||
skyCoordinates moonPosition[3];
|
||||
double offsetDays;
|
||||
|
||||
self.queryTime = t;
|
||||
offsetDays = julianDate(t) - 2451545L; // Days since Jan 1, 2000, 1200UTC.
|
||||
// Begin testing (MR_WINDOW / 2) hours before requested time.
|
||||
offsetDays -= (double)MR_WINDOW / (2 * 24) ;
|
||||
|
||||
// Calculate coordinates at start, middle, and end of search period.
|
||||
for (int i = 0; i < 3; i++) {
|
||||
moonPosition[i] = moon(offsetDays + i * (double)MR_WINDOW / (2 * 24));
|
||||
}
|
||||
|
||||
// If the RA wraps around during this period, unwrap it to keep the
|
||||
// sequence smooth for interpolation.
|
||||
if (moonPosition[1].RA <= moonPosition[0].RA)
|
||||
moonPosition[1].RA += 2 * M_PI;
|
||||
if (moonPosition[2].RA <= moonPosition[1].RA)
|
||||
moonPosition[2].RA += 2 * M_PI;
|
||||
|
||||
// Initialize interpolation array.
|
||||
skyCoordinates mpWindow[3];
|
||||
mpWindow[0].RA = moonPosition[0].RA;
|
||||
mpWindow[0].declination = moonPosition[0].declination;
|
||||
mpWindow[0].distance = moonPosition[0].distance;
|
||||
|
||||
for (int k = 0; k < MR_WINDOW; k++) { // Check each interval of search period
|
||||
float ph = (float)(k + 1)/MR_WINDOW;
|
||||
|
||||
mpWindow[2].RA = interpolate(moonPosition[0].RA,
|
||||
moonPosition[1].RA,
|
||||
moonPosition[2].RA, ph);
|
||||
mpWindow[2].declination = interpolate(moonPosition[0].declination,
|
||||
moonPosition[1].declination,
|
||||
moonPosition[2].declination, ph);
|
||||
mpWindow[2].distance = moonPosition[2].distance;
|
||||
|
||||
// Look for moonrise/set events during this interval.
|
||||
{
|
||||
double ha[3], VHz[3];
|
||||
double lSideTime;
|
||||
|
||||
// Get (local_sidereal_time - MR_WINDOW / 2) hours in radians.
|
||||
lSideTime = localSiderealTime(offsetDays, longitude) * 2* M_PI / 360;
|
||||
|
||||
// Calculate Hour Angle.
|
||||
ha[0] = lSideTime - mpWindow[0].RA + k*K1;
|
||||
ha[2] = lSideTime - mpWindow[2].RA + k*K1 + K1;
|
||||
|
||||
// Hour Angle and declination at half hour.
|
||||
ha[1] = (ha[2] + ha[0])/2;
|
||||
mpWindow[1].declination = (mpWindow[2].declination + mpWindow[0].declination)/2;
|
||||
|
||||
double s = sin(M_PI / 180 * latitude);
|
||||
double c = cos(M_PI / 180 * latitude);
|
||||
|
||||
// refraction + semidiameter at horizon + distance correction
|
||||
double z = cos(M_PI / 180 * (90.567 - 41.685 / mpWindow[0].distance));
|
||||
|
||||
VHz[0] = s * sin(mpWindow[0].declination) + c * cos(mpWindow[0].declination) * cos(ha[0]) - z;
|
||||
VHz[2] = s * sin(mpWindow[2].declination) + c * cos(mpWindow[2].declination) * cos(ha[2]) - z;
|
||||
|
||||
if (signbit(VHz[0]) == signbit(VHz[2]))
|
||||
goto noevent; // No event this hour.
|
||||
|
||||
VHz[1] = s * sin(mpWindow[1].declination) + c * cos(mpWindow[1].declination) * cos(ha[1]) - z;
|
||||
|
||||
double a, b, d, e, time;
|
||||
a = 2 * VHz[2] - 4 * VHz[1] + 2 * VHz[0];
|
||||
b = 4 * VHz[1] - 3 * VHz[0] - VHz[2];
|
||||
d = b * b - 4 * a * VHz[0];
|
||||
|
||||
if (d < 0)
|
||||
goto noevent; // No event this hour.
|
||||
|
||||
d = sqrt(d);
|
||||
e = (-b + d) / (2 * a);
|
||||
if ((e < 0) || (e > 1))
|
||||
e = (-b - d) / (2 * a);
|
||||
time = k + e + 1 / 120; // Time since k=0 of event (in hours).
|
||||
|
||||
// The time we started searching + the time from the start of the search to the
|
||||
// event is the time of the event. Add (time since k=0) - window/2 hours.
|
||||
time_t eventTime;
|
||||
eventTime = self.queryTime + (time - MR_WINDOW / 2) *60 *60;
|
||||
|
||||
double hz, nz, dz, az;
|
||||
hz = ha[0] + e * (ha[2] - ha[0]); // Azimuth of the moon at the event.
|
||||
nz = -cos(mpWindow[1].declination) * sin(hz);
|
||||
dz = c * sin(mpWindow[1].declination) - s * cos(mpWindow[1].declination) * cos(hz);
|
||||
az = atan2(nz, dz) / (M_PI / 180);
|
||||
if (az < 0)
|
||||
az += 360;
|
||||
|
||||
// If there is no previously recorded event of this type, save this event.
|
||||
//
|
||||
// If this event is previous to queryTime, and is the nearest event to queryTime
|
||||
// of events of its type previous to queryType, save this event, replacing the
|
||||
// previously recorded event of its type. Events subsequent to queryTime are
|
||||
// treated similarly, although since events are tested in chronological order
|
||||
// no replacements will occur as successive events will be further from
|
||||
// queryTime.
|
||||
//
|
||||
// If this event is subsequent to queryTime and there is an event of its type
|
||||
// previous to queryTime, then there is an event of the other type between the
|
||||
// two events of this event's type. If the event of the other type is
|
||||
// previous to queryTime, then it is the nearest event to queryTime that is
|
||||
// previous to queryTime. In this case save the current event, replacing
|
||||
// the previously recorded event of its type. Otherwise discard the current
|
||||
// event.
|
||||
//
|
||||
if ((VHz[0] < 0) && (VHz[2] > 0)) {
|
||||
if (!self.hasRise ||
|
||||
((self.riseTime < self.queryTime) == (eventTime < self.queryTime) &&
|
||||
llabs(self.riseTime - self.queryTime) > llabs(eventTime - self.queryTime)) ||
|
||||
((self.riseTime < self.queryTime) != (eventTime < self.queryTime) &&
|
||||
(self.hasSet &&
|
||||
(self.riseTime < self.queryTime) == (self.setTime < self.queryTime)))) {
|
||||
self.riseTime = eventTime;
|
||||
self.riseAz = az;
|
||||
self.hasRise = true;
|
||||
}
|
||||
}
|
||||
if ((VHz[0] > 0) && (VHz[2] < 0)) {
|
||||
if (!self.hasSet ||
|
||||
((self.setTime < self.queryTime) == (eventTime < self.queryTime) &&
|
||||
llabs(self.setTime - self.queryTime) > llabs(eventTime - self.queryTime)) ||
|
||||
((self.setTime < self.queryTime) != (eventTime < self.queryTime) &&
|
||||
(self.hasRise &&
|
||||
(self.setTime < self.queryTime) == (self.riseTime < self.queryTime)))) {
|
||||
self.setTime = eventTime;
|
||||
self.setAz = az;
|
||||
self.hasSet = true;
|
||||
}
|
||||
}
|
||||
|
||||
noevent:
|
||||
// There are obscure cases in the polar regions that require extra logic.
|
||||
if (!self.hasRise && !self.hasSet)
|
||||
self.isVisible = !signbit(VHz[2]);
|
||||
else if (self.hasRise && !self.hasSet)
|
||||
self.isVisible = (self.queryTime > self.riseTime);
|
||||
else if (!self.hasRise && self.hasSet)
|
||||
self.isVisible = (self.queryTime < self.setTime);
|
||||
else
|
||||
self.isVisible = ((self.riseTime < self.setTime && self.riseTime < self.queryTime && self.setTime > self.queryTime) ||
|
||||
(self.riseTime > self.setTime && (self.riseTime < self.queryTime || self.setTime > self.queryTime)));
|
||||
|
||||
}
|
||||
|
||||
mpWindow[0] = mpWindow[2]; // Advance to next interval.
|
||||
}
|
||||
|
||||
return self;
|
||||
}
|
||||
|
||||
|
||||
// Moon position using fundamental arguments
|
||||
// (Van Flandern & Pulkkinen, 1979)
|
||||
skyCoordinates moon(double dayOffset) {
|
||||
double l = 0.606434 + 0.03660110129 * dayOffset;
|
||||
double m = 0.374897 + 0.03629164709 * dayOffset;
|
||||
double f = 0.259091 + 0.03674819520 * dayOffset;
|
||||
double d = 0.827362 + 0.03386319198 * dayOffset;
|
||||
double n = 0.347343 - 0.00014709391 * dayOffset;
|
||||
double g = 0.993126 + 0.00273777850 * dayOffset;
|
||||
|
||||
l = 2 * M_PI * (l - floor(l));
|
||||
m = 2 * M_PI * (m - floor(m));
|
||||
f = 2 * M_PI * (f - floor(f));
|
||||
d = 2 * M_PI * (d - floor(d));
|
||||
n = 2 * M_PI * (n - floor(n));
|
||||
g = 2 * M_PI * (g - floor(g));
|
||||
|
||||
double v, u, w;
|
||||
v = 0.39558 * sin(f + n)
|
||||
+ 0.08200 * sin(f)
|
||||
+ 0.03257 * sin(m - f - n)
|
||||
+ 0.01092 * sin(m + f + n)
|
||||
+ 0.00666 * sin(m - f)
|
||||
- 0.00644 * sin(m + f - 2*d + n)
|
||||
- 0.00331 * sin(f - 2*d + n)
|
||||
- 0.00304 * sin(f - 2*d)
|
||||
- 0.00240 * sin(m - f - 2*d - n)
|
||||
+ 0.00226 * sin(m + f)
|
||||
- 0.00108 * sin(m + f - 2*d)
|
||||
- 0.00079 * sin(f - n)
|
||||
+ 0.00078 * sin(f + 2*d + n);
|
||||
|
||||
u = 1
|
||||
- 0.10828 * cos(m)
|
||||
- 0.01880 * cos(m - 2*d)
|
||||
- 0.01479 * cos(2*d)
|
||||
+ 0.00181 * cos(2*m - 2*d)
|
||||
- 0.00147 * cos(2*m)
|
||||
- 0.00105 * cos(2*d - g)
|
||||
- 0.00075 * cos(m - 2*d + g);
|
||||
|
||||
w = 0.10478 * sin(m)
|
||||
- 0.04105 * sin(2*f + 2*n)
|
||||
- 0.02130 * sin(m - 2*d)
|
||||
- 0.01779 * sin(2*f + n)
|
||||
+ 0.01774 * sin(n)
|
||||
+ 0.00987 * sin(2*d)
|
||||
- 0.00338 * sin(m - 2*f - 2*n)
|
||||
- 0.00309 * sin(g)
|
||||
- 0.00190 * sin(2*f)
|
||||
- 0.00144 * sin(m + n)
|
||||
- 0.00144 * sin(m - 2*f - n)
|
||||
- 0.00113 * sin(m + 2*f + 2*n)
|
||||
- 0.00094 * sin(m - 2*d + g)
|
||||
- 0.00092 * sin(2*m - 2*d);
|
||||
|
||||
double s;
|
||||
skyCoordinates sc;
|
||||
s = w / sqrt(u - v*v);
|
||||
sc.RA = l + atan(s / sqrt(1 - s*s)); // Right ascension
|
||||
|
||||
s = v / sqrt(u);
|
||||
sc.declination = atan(s / sqrt(1 - s*s)); // Declination
|
||||
sc.distance = 60.40974 * sqrt(u); // Distance
|
||||
return(sc);
|
||||
}
|
||||
|
||||
// 3-point interpolation
|
||||
double interpolate(double f0, double f1, double f2, double p) {
|
||||
double a = f1 - f0;
|
||||
double b = f2 - f1 - a;
|
||||
return(f0 + p * (2*a + b * (2*p - 1)));
|
||||
}
|
||||
|
||||
// Determine Julian date from Unix time.
|
||||
// Provides marginally accurate results with Arduino 4-byte double.
|
||||
double julianDate(time_t t) {
|
||||
return (t / 86400.0L + 2440587.5);
|
||||
}
|
||||
|
||||
// Local Sidereal Time
|
||||
// Provides local sidereal time in degrees, requires longitude in degrees
|
||||
// and time in fractional Julian days since Jan 1, 2000, 1200UTC (e.g. the
|
||||
// Julian date - 2451545).
|
||||
// cf. USNO Astronomical Almanac and
|
||||
// https://astronomy.stackexchange.com/questions/24859/local-sidereal-time
|
||||
double localSiderealTime(double offsetDays, double longitude) {
|
||||
double lSideTime = (15.0L * (6.697374558L + 0.06570982441908L * offsetDays +
|
||||
remainder(offsetDays, 1) * 24 + 12 +
|
||||
0.000026 * (offsetDays / 36525) * (offsetDays / 36525))
|
||||
+ longitude) / 360;
|
||||
lSideTime -= floor(lSideTime);
|
||||
lSideTime *= 360; // Convert to degrees.
|
||||
return(lSideTime);
|
||||
}
|
||||
|
||||
42
movement/lib/moonrise/moonrise.h
Normal file
42
movement/lib/moonrise/moonrise.h
Normal file
@@ -0,0 +1,42 @@
|
||||
#ifndef MoonRise_h
|
||||
#define MoonRise_h
|
||||
|
||||
#include <time.h>
|
||||
|
||||
// Size of event search window in hours.
|
||||
// Events further away from the search time than MR_WINDOW/2 will not be
|
||||
// found. At higher latitudes the moon rise/set intervals become larger, so if
|
||||
// you want to find the nearest events this will need to increase. Larger
|
||||
// windows will increase interpolation error. Useful values are probably from
|
||||
// 12 - 48 but will depend upon your application.
|
||||
|
||||
#define MR_WINDOW 72 // Even integer
|
||||
|
||||
typedef struct {
|
||||
double RA; // Right ascension
|
||||
double declination; // Declination
|
||||
double distance; // Distance
|
||||
} skyCoordinates;
|
||||
|
||||
typedef struct {
|
||||
time_t queryTime;
|
||||
time_t riseTime;
|
||||
time_t setTime;
|
||||
float riseAz;
|
||||
float setAz;
|
||||
bool hasRise;
|
||||
bool hasSet;
|
||||
bool isVisible;
|
||||
} MoonRise;
|
||||
|
||||
MoonRise MoonRise_calculate(double latitude, double longitude, time_t t);
|
||||
|
||||
// private:
|
||||
void testMoonRiseSet(MoonRise *self, int i, double offsetDays, double latitude, double longitude,
|
||||
skyCoordinates *mp);
|
||||
skyCoordinates moon(double dayOffset);
|
||||
double interpolate(double f0, double f1, double f2, double p);
|
||||
double julianDate(time_t t);
|
||||
double localSiderealTime(double offsetDays, double longitude);
|
||||
|
||||
#endif
|
||||
Reference in New Issue
Block a user