Moonrise face

This commit is contained in:
hueso 2025-03-29 23:16:45 -03:00
parent 8abf6f4f5b
commit 54d5e6a8ab
6 changed files with 860 additions and 0 deletions

View File

@ -0,0 +1,297 @@
// Compute times of moonrise and moonset at a specified latitude and longitude.
//
// This software minimizes computational work by performing the full calculation
// of the lunar position three times, at the beginning, middle, and end of the
// period of interest. Three point interpolation is used to predict the position
// for each hour, and the arithmetic mean is used to predict the half-hour positions.
//
// The full computational burden is negligible on modern computers, but the
// algorithm is effective and still useful for small embedded systems.
//
// This software was originally adapted to javascript by Stephen R. Schmitt
// from a BASIC program from the 'Astronomical Computing' column of Sky & Telescope,
// April 1989, page 78.
//
// Subsequently adapted from Stephen R. Schmitt's javascript to c++ for the Arduino
// by Cyrus Rahman.
//
// Subsequently adapted from Cyrus Rahman's Arduino C++ to C for the Sensor Watch
// by hueso, this work is subject to Stephen Schmitt's copyright:
//
// Copyright 2007 Stephen R. Schmitt
// Subsequent work Copyright 2020 Cyrus Rahman
// You may use or modify this source code in any way you find useful, provided
// that you agree that the author(s) have no warranty, obligations or liability. You
// must determine the suitability of this source code for your use.
//
// Redistributions of this source code must retain this copyright notice.
#include <math.h>
#include <stdbool.h>
#include <stdlib.h>
#include "moonrise.h"
#define K1 15*(M_PI/180)*1.0027379
// Determine the nearest moon rise or set event previous, and the nearest
// moon rise or set event subsequent, to the specified time in seconds since the
// Unix epoch (January 1, 1970) and at the specified latitude and longitude in
// degrees.
//
// We look for events from MR_WINDOW/2 hours in the past to MR_WINDOW/2 hours
// in the future.
MoonRise MoonRise_calculate(double latitude, double longitude, time_t t) {
MoonRise self;
skyCoordinates moonPosition[3];
double offsetDays;
self.queryTime = t;
offsetDays = julianDate(t) - 2451545L; // Days since Jan 1, 2000, 1200UTC.
// Begin testing (MR_WINDOW / 2) hours before requested time.
offsetDays -= (double)MR_WINDOW / (2 * 24) ;
// Calculate coordinates at start, middle, and end of search period.
for (int i = 0; i < 3; i++) {
moonPosition[i] = moon(offsetDays + i * (double)MR_WINDOW / (2 * 24));
}
// If the RA wraps around during this period, unwrap it to keep the
// sequence smooth for interpolation.
if (moonPosition[1].RA <= moonPosition[0].RA)
moonPosition[1].RA += 2 * M_PI;
if (moonPosition[2].RA <= moonPosition[1].RA)
moonPosition[2].RA += 2 * M_PI;
// Initialize interpolation array.
skyCoordinates mpWindow[3];
mpWindow[0].RA = moonPosition[0].RA;
mpWindow[0].declination = moonPosition[0].declination;
mpWindow[0].distance = moonPosition[0].distance;
for (int k = 0; k < MR_WINDOW; k++) { // Check each interval of search period
float ph = (float)(k + 1)/MR_WINDOW;
mpWindow[2].RA = interpolate(moonPosition[0].RA,
moonPosition[1].RA,
moonPosition[2].RA, ph);
mpWindow[2].declination = interpolate(moonPosition[0].declination,
moonPosition[1].declination,
moonPosition[2].declination, ph);
mpWindow[2].distance = moonPosition[2].distance;
// Look for moonrise/set events during this interval.
{
double ha[3], VHz[3];
double lSideTime;
// Get (local_sidereal_time - MR_WINDOW / 2) hours in radians.
lSideTime = localSiderealTime(offsetDays, longitude) * 2* M_PI / 360;
// Calculate Hour Angle.
ha[0] = lSideTime - mpWindow[0].RA + k*K1;
ha[2] = lSideTime - mpWindow[2].RA + k*K1 + K1;
// Hour Angle and declination at half hour.
ha[1] = (ha[2] + ha[0])/2;
mpWindow[1].declination = (mpWindow[2].declination + mpWindow[0].declination)/2;
double s = sin(M_PI / 180 * latitude);
double c = cos(M_PI / 180 * latitude);
// refraction + semidiameter at horizon + distance correction
double z = cos(M_PI / 180 * (90.567 - 41.685 / mpWindow[0].distance));
VHz[0] = s * sin(mpWindow[0].declination) + c * cos(mpWindow[0].declination) * cos(ha[0]) - z;
VHz[2] = s * sin(mpWindow[2].declination) + c * cos(mpWindow[2].declination) * cos(ha[2]) - z;
if (signbit(VHz[0]) == signbit(VHz[2]))
goto noevent; // No event this hour.
VHz[1] = s * sin(mpWindow[1].declination) + c * cos(mpWindow[1].declination) * cos(ha[1]) - z;
double a, b, d, e, time;
a = 2 * VHz[2] - 4 * VHz[1] + 2 * VHz[0];
b = 4 * VHz[1] - 3 * VHz[0] - VHz[2];
d = b * b - 4 * a * VHz[0];
if (d < 0)
goto noevent; // No event this hour.
d = sqrt(d);
e = (-b + d) / (2 * a);
if ((e < 0) || (e > 1))
e = (-b - d) / (2 * a);
time = k + e + 1 / 120; // Time since k=0 of event (in hours).
// The time we started searching + the time from the start of the search to the
// event is the time of the event. Add (time since k=0) - window/2 hours.
time_t eventTime;
eventTime = self.queryTime + (time - MR_WINDOW / 2) *60 *60;
double hz, nz, dz, az;
hz = ha[0] + e * (ha[2] - ha[0]); // Azimuth of the moon at the event.
nz = -cos(mpWindow[1].declination) * sin(hz);
dz = c * sin(mpWindow[1].declination) - s * cos(mpWindow[1].declination) * cos(hz);
az = atan2(nz, dz) / (M_PI / 180);
if (az < 0)
az += 360;
// If there is no previously recorded event of this type, save this event.
//
// If this event is previous to queryTime, and is the nearest event to queryTime
// of events of its type previous to queryType, save this event, replacing the
// previously recorded event of its type. Events subsequent to queryTime are
// treated similarly, although since events are tested in chronological order
// no replacements will occur as successive events will be further from
// queryTime.
//
// If this event is subsequent to queryTime and there is an event of its type
// previous to queryTime, then there is an event of the other type between the
// two events of this event's type. If the event of the other type is
// previous to queryTime, then it is the nearest event to queryTime that is
// previous to queryTime. In this case save the current event, replacing
// the previously recorded event of its type. Otherwise discard the current
// event.
//
if ((VHz[0] < 0) && (VHz[2] > 0)) {
if (!self.hasRise ||
((self.riseTime < self.queryTime) == (eventTime < self.queryTime) &&
llabs(self.riseTime - self.queryTime) > llabs(eventTime - self.queryTime)) ||
((self.riseTime < self.queryTime) != (eventTime < self.queryTime) &&
(self.hasSet &&
(self.riseTime < self.queryTime) == (self.setTime < self.queryTime)))) {
self.riseTime = eventTime;
self.riseAz = az;
self.hasRise = true;
}
}
if ((VHz[0] > 0) && (VHz[2] < 0)) {
if (!self.hasSet ||
((self.setTime < self.queryTime) == (eventTime < self.queryTime) &&
llabs(self.setTime - self.queryTime) > llabs(eventTime - self.queryTime)) ||
((self.setTime < self.queryTime) != (eventTime < self.queryTime) &&
(self.hasRise &&
(self.setTime < self.queryTime) == (self.riseTime < self.queryTime)))) {
self.setTime = eventTime;
self.setAz = az;
self.hasSet = true;
}
}
noevent:
// There are obscure cases in the polar regions that require extra logic.
if (!self.hasRise && !self.hasSet)
self.isVisible = !signbit(VHz[2]);
else if (self.hasRise && !self.hasSet)
self.isVisible = (self.queryTime > self.riseTime);
else if (!self.hasRise && self.hasSet)
self.isVisible = (self.queryTime < self.setTime);
else
self.isVisible = ((self.riseTime < self.setTime && self.riseTime < self.queryTime && self.setTime > self.queryTime) ||
(self.riseTime > self.setTime && (self.riseTime < self.queryTime || self.setTime > self.queryTime)));
}
mpWindow[0] = mpWindow[2]; // Advance to next interval.
}
return self;
}
// Moon position using fundamental arguments
// (Van Flandern & Pulkkinen, 1979)
skyCoordinates moon(double dayOffset) {
double l = 0.606434 + 0.03660110129 * dayOffset;
double m = 0.374897 + 0.03629164709 * dayOffset;
double f = 0.259091 + 0.03674819520 * dayOffset;
double d = 0.827362 + 0.03386319198 * dayOffset;
double n = 0.347343 - 0.00014709391 * dayOffset;
double g = 0.993126 + 0.00273777850 * dayOffset;
l = 2 * M_PI * (l - floor(l));
m = 2 * M_PI * (m - floor(m));
f = 2 * M_PI * (f - floor(f));
d = 2 * M_PI * (d - floor(d));
n = 2 * M_PI * (n - floor(n));
g = 2 * M_PI * (g - floor(g));
double v, u, w;
v = 0.39558 * sin(f + n)
+ 0.08200 * sin(f)
+ 0.03257 * sin(m - f - n)
+ 0.01092 * sin(m + f + n)
+ 0.00666 * sin(m - f)
- 0.00644 * sin(m + f - 2*d + n)
- 0.00331 * sin(f - 2*d + n)
- 0.00304 * sin(f - 2*d)
- 0.00240 * sin(m - f - 2*d - n)
+ 0.00226 * sin(m + f)
- 0.00108 * sin(m + f - 2*d)
- 0.00079 * sin(f - n)
+ 0.00078 * sin(f + 2*d + n);
u = 1
- 0.10828 * cos(m)
- 0.01880 * cos(m - 2*d)
- 0.01479 * cos(2*d)
+ 0.00181 * cos(2*m - 2*d)
- 0.00147 * cos(2*m)
- 0.00105 * cos(2*d - g)
- 0.00075 * cos(m - 2*d + g);
w = 0.10478 * sin(m)
- 0.04105 * sin(2*f + 2*n)
- 0.02130 * sin(m - 2*d)
- 0.01779 * sin(2*f + n)
+ 0.01774 * sin(n)
+ 0.00987 * sin(2*d)
- 0.00338 * sin(m - 2*f - 2*n)
- 0.00309 * sin(g)
- 0.00190 * sin(2*f)
- 0.00144 * sin(m + n)
- 0.00144 * sin(m - 2*f - n)
- 0.00113 * sin(m + 2*f + 2*n)
- 0.00094 * sin(m - 2*d + g)
- 0.00092 * sin(2*m - 2*d);
double s;
skyCoordinates sc;
s = w / sqrt(u - v*v);
sc.RA = l + atan(s / sqrt(1 - s*s)); // Right ascension
s = v / sqrt(u);
sc.declination = atan(s / sqrt(1 - s*s)); // Declination
sc.distance = 60.40974 * sqrt(u); // Distance
return(sc);
}
// 3-point interpolation
double interpolate(double f0, double f1, double f2, double p) {
double a = f1 - f0;
double b = f2 - f1 - a;
return(f0 + p * (2*a + b * (2*p - 1)));
}
// Determine Julian date from Unix time.
// Provides marginally accurate results with Arduino 4-byte double.
double julianDate(time_t t) {
return (t / 86400.0L + 2440587.5);
}
// Local Sidereal Time
// Provides local sidereal time in degrees, requires longitude in degrees
// and time in fractional Julian days since Jan 1, 2000, 1200UTC (e.g. the
// Julian date - 2451545).
// cf. USNO Astronomical Almanac and
// https://astronomy.stackexchange.com/questions/24859/local-sidereal-time
double localSiderealTime(double offsetDays, double longitude) {
double lSideTime = (15.0L * (6.697374558L + 0.06570982441908L * offsetDays +
remainder(offsetDays, 1) * 24 + 12 +
0.000026 * (offsetDays / 36525) * (offsetDays / 36525))
+ longitude) / 360;
lSideTime -= floor(lSideTime);
lSideTime *= 360; // Convert to degrees.
return(lSideTime);
}

View File

@ -0,0 +1,42 @@
#ifndef MoonRise_h
#define MoonRise_h
#include <time.h>
// Size of event search window in hours.
// Events further away from the search time than MR_WINDOW/2 will not be
// found. At higher latitudes the moon rise/set intervals become larger, so if
// you want to find the nearest events this will need to increase. Larger
// windows will increase interpolation error. Useful values are probably from
// 12 - 48 but will depend upon your application.
#define MR_WINDOW 72 // Even integer
typedef struct {
double RA; // Right ascension
double declination; // Declination
double distance; // Distance
} skyCoordinates;
typedef struct {
time_t queryTime;
time_t riseTime;
time_t setTime;
float riseAz;
float setAz;
bool hasRise;
bool hasSet;
bool isVisible;
} MoonRise;
MoonRise MoonRise_calculate(double latitude, double longitude, time_t t);
// private:
void testMoonRiseSet(MoonRise *self, int i, double offsetDays, double latitude, double longitude,
skyCoordinates *mp);
skyCoordinates moon(double dayOffset);
double interpolate(double f0, double f1, double f2, double p);
double julianDate(time_t t);
double localSiderealTime(double offsetDays, double longitude);
#endif

View File

@ -25,6 +25,7 @@ INCLUDES += \
-I../lib/astrolib/ \
-I../lib/morsecalc/ \
-I../lib/smallchesslib/ \
-I../lib/moonrise/ \
# If you add any other source files you wish to compile, add them after ../app.c
# Note that you will need to add a backslash at the end of any line you wish to continue, i.e.
@ -40,6 +41,7 @@ SRCS += \
../lib/TOTP/TOTP.c \
../lib/base32/base32.c \
../lib/sunriset/sunriset.c \
../lib/moonrise/moonrise.c \
../lib/vsop87/vsop87a_milli.c \
../lib/astrolib/astrolib.c \
../lib/morsecalc/calc.c \
@ -149,6 +151,7 @@ SRCS += \
../watch_faces/sensor/accel_interrupt_count_face.c \
../watch_faces/complication/metronome_face.c \
../watch_faces/complication/smallchess_face.c \
../watch_faces/complication/moonrise_face.c \
# New watch faces go above this line.
# Leave this line at the bottom of the file; it has all the targets for making your project.

View File

@ -123,6 +123,7 @@
#include "accel_interrupt_count_face.h"
#include "metronome_face.h"
#include "smallchess_face.h"
#include "moonrise_face.h"
// New includes go above this line.
#endif // MOVEMENT_FACES_H_

View File

@ -0,0 +1,427 @@
/*
* MIT License
*
* Copyright (c) 2025 hueso
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*
*/
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "moonrise_face.h"
#include "sunrise_sunset_face.h"
#include "watch.h"
#include "watch_utility.h"
#include "moonrise.h"
#if __EMSCRIPTEN__
#include <emscripten.h>
#endif
static const uint8_t _location_count = sizeof(longLatPresets) / sizeof(long_lat_presets_t);
static void _moonrise_set_expiration(moonrise_state_t *state, watch_date_time next_rise_set) {
uint32_t timestamp = watch_utility_date_time_to_unix_time(next_rise_set, 0);
state->rise_set_expires = watch_utility_date_time_from_unix_time(timestamp + 60, 0);
}
static void _moonrise_face_update(movement_settings_t *settings, moonrise_state_t *state) {
char buf[14];
bool show_next_match = false;
movement_location_t movement_location;
if (state->longLatToUse == 0 || _location_count <= 1)
movement_location = (movement_location_t) watch_get_backup_data(1);
else{
movement_location.bit.latitude = longLatPresets[state->longLatToUse].latitude;
movement_location.bit.longitude = longLatPresets[state->longLatToUse].longitude;
}
if (movement_location.reg == 0) {
watch_display_string("MR no Loc", 0);
return;
}
watch_date_time date_time = watch_rtc_get_date_time(); // the current local date / time
watch_date_time scratch_time; // scratchpad, contains different values at different times
scratch_time.reg = date_time.reg;
// Weird quirky unsigned things were happening when I tried to cast these directly to doubles below.
// it looks redundant, but extracting them to local int16's seemed to fix it.
int16_t lat_centi = (int16_t)movement_location.bit.latitude;
int16_t lon_centi = (int16_t)movement_location.bit.longitude;
double lat = (double)lat_centi / 100.0;
double lon = (double)lon_centi / 100.0;
time_t t = watch_utility_date_time_to_unix_time(scratch_time, movement_timezone_offsets[settings->bit.time_zone] * 60);
MoonRise mr = MoonRise_calculate(lat, lon, t);
if(mr.isVisible)
watch_set_indicator(WATCH_INDICATOR_LAP);
else
watch_clear_indicator(WATCH_INDICATOR_LAP);
for(int i = 0; i < 2; i++) {
t = watch_utility_date_time_to_unix_time(scratch_time, movement_timezone_offsets[settings->bit.time_zone] * 60);
MoonRise mr = MoonRise_calculate(lat, lon, t);
if (!mr.hasRise && !mr.hasSet) {
watch_clear_colon();
watch_clear_indicator(WATCH_INDICATOR_PM);
watch_clear_indicator(WATCH_INDICATOR_24H);
sprintf(buf, "MR%2d none ", scratch_time.unit.day);
watch_display_string(buf, 0);
return;
}
watch_set_colon();
if (settings->bit.clock_mode_24h && !settings->bit.clock_24h_leading_zero)
watch_set_indicator(WATCH_INDICATOR_24H);
scratch_time = watch_utility_date_time_from_unix_time(mr.riseTime, movement_timezone_offsets[settings->bit.time_zone] * 60);
if (date_time.reg < scratch_time.reg) _moonrise_set_expiration(state, scratch_time);
if (date_time.reg < scratch_time.reg || show_next_match) {
if (state->rise_index == 0 || show_next_match) {
bool set_leading_zero = false;
if (!settings->bit.clock_mode_24h) {
if (watch_utility_convert_to_12_hour(&scratch_time)) watch_set_indicator(WATCH_INDICATOR_PM);
else watch_clear_indicator(WATCH_INDICATOR_PM);
} else if (settings->bit.clock_24h_leading_zero && scratch_time.unit.hour < 10) {
set_leading_zero = true;
}
sprintf(buf, "M %2d%2d%02d%s", scratch_time.unit.day, scratch_time.unit.hour, scratch_time.unit.minute,longLatPresets[state->longLatToUse].name);
watch_display_string(buf, 0);
watch_set_pixel(0,11);
if (set_leading_zero)
watch_display_string("0", 4);
return;
} else {
show_next_match = true;
}
}
scratch_time = watch_utility_date_time_from_unix_time(mr.setTime, movement_timezone_offsets[settings->bit.time_zone] * 60);
if (date_time.reg < scratch_time.reg) _moonrise_set_expiration(state, scratch_time);
if (date_time.reg < scratch_time.reg || show_next_match) {
if (state->rise_index == 0 || show_next_match) {
bool set_leading_zero = false;
if (!settings->bit.clock_mode_24h) {
if (watch_utility_convert_to_12_hour(&scratch_time)) watch_set_indicator(WATCH_INDICATOR_PM);
else watch_clear_indicator(WATCH_INDICATOR_PM);
} else if (settings->bit.clock_24h_leading_zero && scratch_time.unit.hour < 10) {
set_leading_zero = true;
}
sprintf(buf, "M %2d%2d%02d%s", scratch_time.unit.day, scratch_time.unit.hour, scratch_time.unit.minute, longLatPresets[state->longLatToUse].name);
watch_display_string(buf, 0);
watch_set_pixel(2,11);
if (set_leading_zero)
watch_display_string("0", 4);
return;
} else {
show_next_match = true;
}
}
// it's after sunset. we need to display sunrise/sunset for tomorrow.
uint32_t timestamp = watch_utility_date_time_to_unix_time(date_time, 0);
timestamp += 86400;
scratch_time = watch_utility_date_time_from_unix_time(timestamp, 0);
}
}
static int16_t _moonrise_face_latlon_from_struct(moonrise_lat_lon_settings_t val) {
int16_t retval = (val.sign ? -1 : 1) *
(
val.hundreds * 10000 +
val.tens * 1000 +
val.ones * 100 +
val.tenths * 10 +
val.hundredths
);
return retval;
}
static moonrise_lat_lon_settings_t _moonrise_face_struct_from_latlon(int16_t val) {
moonrise_lat_lon_settings_t retval;
retval.sign = val < 0;
val = abs(val);
retval.hundredths = val % 10;
val /= 10;
retval.tenths = val % 10;
val /= 10;
retval.ones = val % 10;
val /= 10;
retval.tens = val % 10;
val /= 10;
retval.hundreds = val % 10;
return retval;
}
static void _moonrise_face_update_location_register(moonrise_state_t *state) {
if (state->location_changed) {
movement_location_t movement_location;
int16_t lat = _moonrise_face_latlon_from_struct(state->working_latitude);
int16_t lon = _moonrise_face_latlon_from_struct(state->working_longitude);
movement_location.bit.latitude = lat;
movement_location.bit.longitude = lon;
watch_store_backup_data(movement_location.reg, 1);
state->location_changed = false;
}
}
static void _moonrise_face_update_settings_display(movement_event_t event, moonrise_state_t *state) {
char buf[12];
switch (state->page) {
case 0:
return;
case 1:
sprintf(buf, "LA %c %04d", state->working_latitude.sign ? '-' : '+', abs(_moonrise_face_latlon_from_struct(state->working_latitude)));
break;
case 2:
sprintf(buf, "LO %c%05d", state->working_longitude.sign ? '-' : '+', abs(_moonrise_face_latlon_from_struct(state->working_longitude)));
break;
}
if (event.subsecond % 2) {
buf[state->active_digit + 4] = ' ';
}
watch_display_string(buf, 0);
}
static void _moonrise_face_advance_digit(moonrise_state_t *state) {
state->location_changed = true;
switch (state->page) {
case 1: // latitude
switch (state->active_digit) {
case 0:
state->working_latitude.sign++;
break;
case 1:
// we skip this digit
break;
case 2:
state->working_latitude.tens = (state->working_latitude.tens + 1) % 10;
if (abs(_moonrise_face_latlon_from_struct(state->working_latitude)) > 9000) {
// prevent latitude from going over ±90.
// TODO: perform these checks when advancing the digit?
state->working_latitude.ones = 0;
state->working_latitude.tenths = 0;
state->working_latitude.hundredths = 0;
}
break;
case 3:
state->working_latitude.ones = (state->working_latitude.ones + 1) % 10;
if (abs(_moonrise_face_latlon_from_struct(state->working_latitude)) > 9000) state->working_latitude.ones = 0;
break;
case 4:
state->working_latitude.tenths = (state->working_latitude.tenths + 1) % 10;
if (abs(_moonrise_face_latlon_from_struct(state->working_latitude)) > 9000) state->working_latitude.tenths = 0;
break;
case 5:
state->working_latitude.hundredths = (state->working_latitude.hundredths + 1) % 10;
if (abs(_moonrise_face_latlon_from_struct(state->working_latitude)) > 9000) state->working_latitude.hundredths = 0;
break;
}
break;
case 2: // longitude
switch (state->active_digit) {
case 0:
state->working_longitude.sign++;
break;
case 1:
state->working_longitude.hundreds = (state->working_longitude.hundreds + 1) % 10;
if (abs(_moonrise_face_latlon_from_struct(state->working_longitude)) > 18000) {
// prevent longitude from going over ±180
state->working_longitude.tens = 8;
state->working_longitude.ones = 0;
state->working_longitude.tenths = 0;
state->working_longitude.hundredths = 0;
}
break;
case 2:
state->working_longitude.tens = (state->working_longitude.tens + 1) % 10;
if (abs(_moonrise_face_latlon_from_struct(state->working_longitude)) > 18000) state->working_longitude.tens = 0;
break;
case 3:
state->working_longitude.ones = (state->working_longitude.ones + 1) % 10;
if (abs(_moonrise_face_latlon_from_struct(state->working_longitude)) > 18000) state->working_longitude.ones = 0;
break;
case 4:
state->working_longitude.tenths = (state->working_longitude.tenths + 1) % 10;
if (abs(_moonrise_face_latlon_from_struct(state->working_longitude)) > 18000) state->working_longitude.tenths = 0;
break;
case 5:
state->working_longitude.hundredths = (state->working_longitude.hundredths + 1) % 10;
if (abs(_moonrise_face_latlon_from_struct(state->working_longitude)) > 18000) state->working_longitude.hundredths = 0;
break;
}
break;
}
}
void moonrise_face_setup(movement_settings_t *settings, uint8_t watch_face_index, void ** context_ptr) {
(void) settings;
(void) watch_face_index;
if (*context_ptr == NULL) {
*context_ptr = malloc(sizeof(moonrise_state_t));
memset(*context_ptr, 0, sizeof(moonrise_state_t));
}
}
void moonrise_face_activate(movement_settings_t *settings, void *context) {
(void) settings;
if (watch_tick_animation_is_running()) watch_stop_tick_animation();
#if __EMSCRIPTEN__
int16_t browser_lat = EM_ASM_INT({
return lat;
});
int16_t browser_lon = EM_ASM_INT({
return lon;
});
if ((watch_get_backup_data(1) == 0) && (browser_lat || browser_lon)) {
movement_location_t browser_loc;
browser_loc.bit.latitude = browser_lat;
browser_loc.bit.longitude = browser_lon;
watch_store_backup_data(browser_loc.reg, 1);
}
#endif
moonrise_state_t *state = (moonrise_state_t *)context;
movement_location_t movement_location = (movement_location_t) watch_get_backup_data(1);
state->working_latitude = _moonrise_face_struct_from_latlon(movement_location.bit.latitude);
state->working_longitude = _moonrise_face_struct_from_latlon(movement_location.bit.longitude);
}
bool moonrise_face_loop(movement_event_t event, movement_settings_t *settings, void *context) {
moonrise_state_t *state = (moonrise_state_t *)context;
switch (event.event_type) {
case EVENT_ACTIVATE:
_moonrise_face_update(settings, state);
break;
case EVENT_LOW_ENERGY_UPDATE:
case EVENT_TICK:
if (state->page == 0) {
// if entering low energy mode, start tick animation
if (event.event_type == EVENT_LOW_ENERGY_UPDATE && !watch_tick_animation_is_running()) watch_start_tick_animation(1000);
// check if we need to update the display
watch_date_time date_time = watch_rtc_get_date_time();
if (date_time.reg >= state->rise_set_expires.reg) {
// and on the off chance that this happened before EVENT_TIMEOUT snapped us back to rise/set 0, go back now
state->rise_index = 0;
_moonrise_face_update(settings, state);
}
} else {
_moonrise_face_update_settings_display(event, state);
}
break;
case EVENT_LIGHT_BUTTON_DOWN:
if (state->page) {
state->active_digit++;
if (state->page == 1 && state->active_digit == 1) state->active_digit++; // max latitude is +- 90, no hundreds place
if (state->active_digit > 5) {
state->active_digit = 0;
state->page = (state->page + 1) % 3;
_moonrise_face_update_location_register(state);
}
_moonrise_face_update_settings_display(event, context);
} else if (_location_count <= 1) {
movement_illuminate_led();
}
if (state->page == 0) {
movement_request_tick_frequency(1);
_moonrise_face_update(settings, state);
}
break;
case EVENT_LIGHT_LONG_PRESS:
if (_location_count <= 1) break;
else if (!state->page) movement_illuminate_led();
break;
case EVENT_LIGHT_BUTTON_UP:
if (state->page == 0 && _location_count > 1) {
state->longLatToUse = (state->longLatToUse + 1) % _location_count;
_moonrise_face_update(settings, state);
}
break;
case EVENT_ALARM_BUTTON_UP:
if (state->page) {
_moonrise_face_advance_digit(state);
_moonrise_face_update_settings_display(event, context);
} else {
state->rise_index = (state->rise_index + 1) % 2;
_moonrise_face_update(settings, state);
}
break;
case EVENT_ALARM_LONG_PRESS:
if (state->page == 0) {
if (state->longLatToUse != 0) {
state->longLatToUse = 0;
_moonrise_face_update(settings, state);
break;
}
state->page++;
state->active_digit = 0;
watch_clear_display();
movement_request_tick_frequency(4);
_moonrise_face_update_settings_display(event, context);
}
else {
state->active_digit = 0;
state->page = 0;
_moonrise_face_update_location_register(state);
_moonrise_face_update(settings, state);
}
break;
case EVENT_TIMEOUT:
if (watch_get_backup_data(1) == 0) {
// if no location set, return home
movement_move_to_face(0);
} else if (state->page || state->rise_index) {
// otherwise on timeout, exit settings mode and return to the next sunrise or sunset
state->page = 0;
state->rise_index = 0;
movement_request_tick_frequency(1);
_moonrise_face_update(settings, state);
}
break;
default:
return movement_default_loop_handler(event, settings);
}
return true;
}
void moonrise_face_resign(movement_settings_t *settings, void *context) {
(void) settings;
moonrise_state_t *state = (moonrise_state_t *)context;
state->page = 0;
state->active_digit = 0;
state->rise_index = 0;
_moonrise_face_update_location_register(state);
}

View File

@ -0,0 +1,90 @@
/*
* MIT License
*
* Copyright (c) 2022 Joey Castillo
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef MOONRISE_FACE_H_
#define MOONRISE_FACE_H_
/*
* SUNRISE & SUNSET FACE
*
* The Sunrise/Sunset face is designed to display the next sunrise or sunset
* for a given location. It also functions as an interface for setting the
* location register, which other watch faces can use for various purposes.
*
* Refer to the wiki for usage instructions:
* https://www.sensorwatch.net/docs/watchfaces/complication/#sunrisesunset
*/
#include "movement.h"
typedef struct {
uint8_t sign: 1; // 0-1
uint8_t hundreds: 1; // 0-1, ignored for latitude
uint8_t tens: 4; // 0-9 (must wrap at 10)
uint8_t ones: 4; // 0-9 (must wrap at 10)
uint8_t tenths: 4; // 0-9 (must wrap at 10)
uint8_t hundredths: 4; // 0-9 (must wrap at 10)
} moonrise_lat_lon_settings_t;
typedef struct {
uint8_t page;
uint8_t rise_index;
uint8_t active_digit;
bool location_changed;
watch_date_time rise_set_expires;
moonrise_lat_lon_settings_t working_latitude;
moonrise_lat_lon_settings_t working_longitude;
uint8_t longLatToUse;
} moonrise_state_t;
void moonrise_face_setup(movement_settings_t *settings, uint8_t watch_face_index, void ** context_ptr);
void moonrise_face_activate(movement_settings_t *settings, void *context);
bool moonrise_face_loop(movement_event_t event, movement_settings_t *settings, void *context);
void moonrise_face_resign(movement_settings_t *settings, void *context);
#define moonrise_face ((const watch_face_t){ \
moonrise_face_setup, \
moonrise_face_activate, \
moonrise_face_loop, \
moonrise_face_resign, \
NULL, \
})
/*
typedef struct {
char name[2];
int16_t latitude;
int16_t longitude;
} long_lat_presets_t;
static const long_lat_presets_t longLatPresets[] =
{
{ .name = " "}, // Default, the long and lat get replaced by what's set in the watch
// { .name = "Ny", .latitude = 4072, .longitude = -7401 }, // New York City, NY
// { .name = "LA", .latitude = 3405, .longitude = -11824 }, // Los Angeles, CA
// { .name = "dE", .latitude = 4221, .longitude = -8305 }, // Detroit, MI
};
*/
#endif // MOONRISE_FACE_H_