USB Improvements

* Introduce shell module for basic serial shell with argument parsing
* Introduce shell_cmd_list module for basic compile-time command
  registration
* Harden USB handling to hang less and drop fewer inputs
  - Service tud_task() with periodic TC0 timer interrupt
  - Service cdc_task() with periodic TC1 timer interrupt
  - Handle shell servicing in main app loop
  - Add a circular buffering layer for reads/writes
* Change newline prints to also send carriage return
* Refactor filesystem commands for shell subsystem
* Introduce new shell commands:
  - 'help' command
  - 'flash' command to reset into bootloader
  - 'stress' command to stress CDC writes

Testing:
* Shell validated on Sensor Watch Blue w/ Linux host
* Shell validated in emscripten emulator
* Tuned by spamming inputs during `stress` cmd until stack didn't crash
This commit is contained in:
Edward Shin
2023-10-15 00:36:49 -04:00
parent 63d6bc6aa0
commit 5b762d0168
15 changed files with 820 additions and 160 deletions

View File

@@ -79,7 +79,6 @@ int main(void) {
while (1) {
bool usb_enabled = hri_usbdevice_get_CTRLA_ENABLE_bit(USB);
bool can_sleep = app_loop();
if (can_sleep && !usb_enabled) {
app_prepare_for_standby();
sleep(4);

View File

@@ -23,6 +23,7 @@
*/
#include "watch_private.h"
#include "watch_private_cdc.h"
#include "watch_utility.h"
#include "tusb.h"
@@ -170,6 +171,87 @@ void _watch_disable_tcc(void) {
// disable the TCC
hri_tcc_clear_CTRLA_ENABLE_bit(TCC0);
hri_mclk_clear_APBCMASK_TCC0_bit(MCLK);
}
void _watch_enable_tc0(void) {
// before we init TinyUSB, we are going to need a periodic callback to handle TinyUSB tasks.
// TC2 and TC3 are reserved for devices on the 9-pin connector, so let's use TC0.
// clock TC0 with the 8 MHz clock on GCLK0.
hri_gclk_write_PCHCTRL_reg(GCLK, TC0_GCLK_ID, GCLK_PCHCTRL_GEN_GCLK0_Val | GCLK_PCHCTRL_CHEN);
// and enable the peripheral clock.
hri_mclk_set_APBCMASK_TC0_bit(MCLK);
// disable and reset TC0.
hri_tc_clear_CTRLA_ENABLE_bit(TC0);
hri_tc_wait_for_sync(TC0, TC_SYNCBUSY_ENABLE);
hri_tc_write_CTRLA_reg(TC0, TC_CTRLA_SWRST);
hri_tc_wait_for_sync(TC0, TC_SYNCBUSY_SWRST);
hri_tc_write_CTRLA_reg(TC0, TC_CTRLA_PRESCALER_DIV1024 | // divide the 8 MHz clock by 1024 to count at 7812.5 Hz
TC_CTRLA_MODE_COUNT8 | // count in 8-bit mode
TC_CTRLA_RUNSTDBY); // run in standby, just in case we figure that out
hri_tccount8_write_PER_reg(TC0, 10); // 7812.5 Hz / 10 = 781.125 Hz
// set an interrupt on overflow; this will call TC0_Handler below.
hri_tc_set_INTEN_OVF_bit(TC0);
// set priority higher than TC1
NVIC_SetPriority(TC0_IRQn, 5);
NVIC_ClearPendingIRQ(TC0_IRQn);
NVIC_EnableIRQ(TC0_IRQn);
// Start the timer
hri_tc_set_CTRLA_ENABLE_bit(TC0);
}
void _watch_disable_tc0(void) {
NVIC_DisableIRQ(TC0_IRQn);
NVIC_ClearPendingIRQ(TC0_IRQn);
hri_tc_clear_CTRLA_ENABLE_bit(TC0);
hri_tc_wait_for_sync(TC0, TC_SYNCBUSY_ENABLE);
hri_tc_write_CTRLA_reg(TC0, TC_CTRLA_SWRST);
hri_tc_wait_for_sync(TC0, TC_SYNCBUSY_SWRST);
}
void _watch_enable_tc1(void) {
hri_gclk_write_PCHCTRL_reg(GCLK, TC1_GCLK_ID, GCLK_PCHCTRL_GEN_GCLK0_Val | GCLK_PCHCTRL_CHEN);
// and enable the peripheral clock.
hri_mclk_set_APBCMASK_TC1_bit(MCLK);
// disable and reset TC1.
hri_tc_clear_CTRLA_ENABLE_bit(TC1);
hri_tc_wait_for_sync(TC1, TC_SYNCBUSY_ENABLE);
hri_tc_write_CTRLA_reg(TC1, TC_CTRLA_SWRST);
hri_tc_wait_for_sync(TC1, TC_SYNCBUSY_SWRST);
hri_tc_write_CTRLA_reg(TC1, TC_CTRLA_PRESCALER_DIV1024 | // divide the 8 MHz clock by 1024 to count at 7812.5 Hz
TC_CTRLA_MODE_COUNT8 | // count in 8-bit mode
TC_CTRLA_RUNSTDBY); // run in standby, just in case we figure that out
hri_tccount8_write_PER_reg(TC1, 20); // 7812.5 Hz / 50 = 156.25 Hz
// set an interrupt on overflow; this will call TC1_Handler below.
hri_tc_set_INTEN_OVF_bit(TC1);
// set priority lower than TC0
NVIC_SetPriority(TC1_IRQn, 6);
NVIC_ClearPendingIRQ(TC1_IRQn);
NVIC_EnableIRQ(TC1_IRQn);
// Start the timer
hri_tc_set_CTRLA_ENABLE_bit(TC1);
}
void _watch_disable_tc1(void) {
NVIC_DisableIRQ(TC1_IRQn);
NVIC_ClearPendingIRQ(TC1_IRQn);
hri_tc_clear_CTRLA_ENABLE_bit(TC1);
hri_tc_wait_for_sync(TC1, TC_SYNCBUSY_ENABLE);
hri_tc_write_CTRLA_reg(TC1, TC_CTRLA_SWRST);
hri_tc_wait_for_sync(TC1, TC_SYNCBUSY_SWRST);
}
void TC0_Handler(void) {
tud_task();
TC0->COUNT8.INTFLAG.reg |= TC_INTFLAG_OVF;
}
void TC1_Handler(void) {
cdc_task();
TC1->COUNT8.INTFLAG.reg |= TC_INTFLAG_OVF;
}
void _watch_enable_usb(void) {
@@ -216,76 +298,17 @@ void _watch_enable_usb(void) {
gpio_set_pin_function(PIN_PA24, PINMUX_PA24G_USB_DM);
gpio_set_pin_function(PIN_PA25, PINMUX_PA25G_USB_DP);
// before we init TinyUSB, we are going to need a periodic callback to handle TinyUSB tasks.
// TC2 and TC3 are reserved for devices on the 9-pin connector, so let's use TC0.
// clock TC0 with the 8 MHz clock on GCLK0.
hri_gclk_write_PCHCTRL_reg(GCLK, TC0_GCLK_ID, GCLK_PCHCTRL_GEN_GCLK0_Val | GCLK_PCHCTRL_CHEN);
// and enable the peripheral clock.
hri_mclk_set_APBCMASK_TC0_bit(MCLK);
// disable and reset TC0.
hri_tc_clear_CTRLA_ENABLE_bit(TC0);
hri_tc_wait_for_sync(TC0, TC_SYNCBUSY_ENABLE);
hri_tc_write_CTRLA_reg(TC0, TC_CTRLA_SWRST);
hri_tc_wait_for_sync(TC0, TC_SYNCBUSY_SWRST);
// configure the TC to overflow 1,000 times per second
hri_tc_write_CTRLA_reg(TC0, TC_CTRLA_PRESCALER_DIV64 | // divide the 8 MHz clock by 64 to count at 125 KHz
TC_CTRLA_MODE_COUNT8 | // count in 8-bit mode
TC_CTRLA_RUNSTDBY); // run in standby, just in case we figure that out
hri_tccount8_write_PER_reg(TC0, 125); // 125000 Hz / 125 = 1,000 Hz
// set an interrupt on overflow; this will call TC0_Handler below.
hri_tc_set_INTEN_OVF_bit(TC0);
NVIC_ClearPendingIRQ(TC0_IRQn);
NVIC_EnableIRQ (TC0_IRQn);
_watch_enable_tc0();
// now we can init TinyUSB
tusb_init();
// and start the timer that handles USB device tasks.
hri_tc_set_CTRLA_ENABLE_bit(TC0);
}
// this function ends up getting called by printf to log stuff to the USB console.
int _write(int file, char *ptr, int len) {
(void)file;
if (hri_usbdevice_get_CTRLA_ENABLE_bit(USB)) {
tud_cdc_n_write(0, (void const*)ptr, len);
tud_cdc_n_write_flush(0);
return len;
}
return 0;
}
static char buf[256] = {0};
int _read(int file, char *ptr, int len) {
(void)file;
int actual_length = strlen(buf);
if (actual_length) {
memcpy(ptr, buf, min(len, actual_length));
return actual_length;
}
return 0;
_watch_enable_tc1();
}
void USB_Handler(void) {
tud_int_handler(0);
}
static void cdc_task(void) {
if (tud_cdc_n_available(0)) {
tud_cdc_n_read(0, buf, sizeof(buf));
} else {
memset(buf, 0, 256);
}
}
void TC0_Handler(void) {
tud_task();
cdc_task();
TC0->COUNT8.INTFLAG.reg |= TC_INTFLAG_OVF;
}
// USB Descriptors and tinyUSB callbacks follow.
/*

View File

@@ -0,0 +1,160 @@
/*
* MIT License
*
* Copyright (c) 2020 Joey Castillo
* Copyright (c) 2023 Edward Shin
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "watch_private_cdc.h"
#include <stddef.h>
#include "watch_utility.h"
#include "tusb.h"
/*
* Implement a circular buffer for the USB CDC Serial read buffer.
* The size of the buffer must be a power of two for this circular buffer
* implementation to work.
*/
// Size of the circular buffer. Must be a power of two.
#define CDC_WRITE_BUF_SZ (1024)
// Macro function to perform modular arithmetic on an index.
// eg. (63 + 2) & (64 - 1) -> 1
#define CDC_WRITE_BUF_IDX(x) ((x) & (CDC_WRITE_BUF_SZ - 1))
static char s_write_buf[CDC_WRITE_BUF_SZ] = {0};
static size_t s_write_buf_pos = 0;
static size_t s_write_buf_len = 0;
#define CDC_READ_BUF_SZ (256)
#define CDC_READ_BUF_IDX(x) ((x) & (CDC_READ_BUF_SZ - 1))
static char s_read_buf[CDC_READ_BUF_SZ] = {0};
static size_t s_read_buf_pos = 0;
static size_t s_read_buf_len = 0;
// Mask TC1 interrupts, preventing calls to cdc_task()
static inline void prv_critical_section_enter(void) {
NVIC_DisableIRQ(TC1_IRQn);
}
// Unmask TC1 interrupts, allowing calls to cdc_task()
static inline void prv_critical_section_exit(void) {
NVIC_EnableIRQ(TC1_IRQn);
}
int _write(int file, char *ptr, int len) {
(void) file;
if (ptr == NULL || len <= 0) {
return -1;
}
int bytes_written = 0;
prv_critical_section_enter();
for (int i = 0; i < len; i++) {
s_write_buf[s_write_buf_pos] = ptr[i];
s_write_buf_pos = CDC_WRITE_BUF_IDX(s_write_buf_pos + 1);
if (s_write_buf_len < CDC_WRITE_BUF_SZ) {
s_write_buf_len++;
}
bytes_written++;
}
prv_critical_section_exit();
return bytes_written;
}
int _read(int file, char *ptr, int len) {
(void) file;
prv_critical_section_enter();
if (ptr == NULL || len <= 0 || s_read_buf_len == 0) {
prv_critical_section_exit();
return -1;
}
// Clamp to the length of the read buffer
if ((size_t) len > s_read_buf_len) {
len = s_read_buf_len;
}
// Calculate the start of the circular buffer, and iterate from there
const size_t start_pos = CDC_READ_BUF_IDX(s_read_buf_pos - len);
for (size_t i = 0; i < (size_t) len; i++) {
const size_t idx = CDC_READ_BUF_IDX(start_pos + i);
ptr[i] = s_read_buf[idx];
s_read_buf[idx] = 0;
}
// Update circular buffer position and length
s_read_buf_len -= len;
s_read_buf_pos = CDC_READ_BUF_IDX(s_read_buf_pos - len);
prv_critical_section_exit();
return len;
}
static void prv_handle_reads(void) {
while (tud_cdc_available()) {
int c = tud_cdc_read_char();
if (c < 0) {
continue;
}
s_read_buf[s_read_buf_pos] = c;
s_read_buf_pos = CDC_READ_BUF_IDX(s_read_buf_pos + 1);
if (s_read_buf_len < CDC_READ_BUF_SZ) {
s_read_buf_len++;
}
}
}
static void prv_handle_writes(void) {
if (s_write_buf_len > 0) {
const size_t start_pos =
CDC_WRITE_BUF_IDX(s_write_buf_pos - s_write_buf_len);
for (size_t i = 0; i < (size_t) s_write_buf_len; i++) {
const size_t idx = CDC_WRITE_BUF_IDX(start_pos + i);
if (tud_cdc_available() > 0) {
// If we receive data while doing a large write, we need to
// fully service it before continuing to write, or the
// stack will crash.
prv_handle_reads();
}
if (tud_cdc_write_available()) {
tud_cdc_write(&s_write_buf[idx], 1);
}
s_write_buf[idx] = 0;
s_write_buf_len--;
}
tud_cdc_write_flush();
}
}
void cdc_task(void) {
prv_handle_reads();
prv_handle_writes();
}

View File

@@ -0,0 +1,33 @@
/*
* MIT License
*
* Copyright (c) 2020 Joey Castillo
* Copyright (c) 2023 Edward Shin
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef _WATCH_PRIVATE_CDC_H_INCLUDED
#define _WATCH_PRIVATE_CDC_H_INCLUDED
int _write(int file, char *ptr, int len);
int _read(int file, char *ptr, int len);
void cdc_task(void);
#endif

View File

@@ -88,6 +88,10 @@ bool watch_is_usb_enabled(void);
*/
void watch_reset_to_bootloader(void);
/** @brief Call periodically from app main loop to service CDC RX/TX.
*/
void cdc_task(void);
/** @brief Reads up to len bytes from the USB serial.
* @param file ignored, you can pass in 0
* @param ptr pointer to a buffer of at least len bytes
@@ -96,4 +100,4 @@ void watch_reset_to_bootloader(void);
*/
int read(int file, char *ptr, int len);
#endif /* WATCH_H_ */
#endif /* WATCH_H_ */

View File

@@ -38,14 +38,19 @@ void _watch_enable_tcc(void);
/// Called by buzzer and LED teardown functions. You should not call this from your app.
void _watch_disable_tcc(void);
/// Enable USB task timer. Called by USB enable routine in main(). You should not call this from your app.
void _watch_enable_tc0(void);
/// Disable USB task timer. You should not call this from your app.
void _watch_disable_tc0(void);
/// Enable CDC task timer. Called by USB enable routine in main(). You should not call this from your app.
void _watch_enable_tc1(void);
/// Disable CDC task timer. You should not call this from your app.
void _watch_disable_tc1(void);
/// Called by main.c if plugged in to USB. You should not call this from your app.
void _watch_enable_usb(void);
// this function ends up getting called by printf to log stuff to the USB console.
int _write(int file, char *ptr, int len);
// i thought this would be called by gets but it doesn't? anyway it does get called by read()
// so that's our mechanism for reading data from the USB serial console.
int _read(int file, char *ptr, int len);
#endif