Merge branch 'advanced-pulsometer' into advanced

Implements an advanced pulsometer that can be calibrated by the user.
Also features a streamlined and responsive user interface,
new documentation and generally improved code.

Tested-by: Matheus Afonso Martins Moreira <matheus.a.m.moreira@gmail.com>
Tested-on-hardware-by: Matheus Afonso Martins Moreira <matheus.a.m.moreira@gmail.com>
Signed-off-by: Matheus Afonso Martins Moreira <matheus.a.m.moreira@gmail.com>
GitHub-Pull-Request: https://github.com/joeycastillo/Sensor-Watch/pull/371
This commit is contained in:
Matheus Afonso Martins Moreira 2024-03-05 00:53:12 -03:00
commit 66796805ac
2 changed files with 178 additions and 74 deletions

View File

@ -1,7 +1,11 @@
/* SPDX-License-Identifier: MIT */
/* /*
* MIT License * MIT License
* *
* Copyright (c) 2022 Joey Castillo * Copyright © 2021-2022 Joey Castillo <joeycastillo@utexas.edu> <jose.castillo@gmail.com>
* Copyright © 2023 Jeremy O'Brien <neutral@fastmail.com>
* Copyright © 2024 Matheus Afonso Martins Moreira <matheus.a.m.moreira@gmail.com> (https://www.matheusmoreira.com/)
* *
* Permission is hereby granted, free of charge, to any person obtaining a copy * Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal * of this software and associated documentation files (the "Software"), to deal
@ -24,73 +28,162 @@
#include <stdlib.h> #include <stdlib.h>
#include <string.h> #include <string.h>
#include "pulsometer_face.h" #include "pulsometer_face.h"
#include "watch.h" #include "watch.h"
#define PULSOMETER_FACE_FREQUENCY_FACTOR (4ul) // refresh rate will be 2 to this power Hz (0 for 1 Hz, 2 for 4 Hz, etc.) #ifndef PULSOMETER_FACE_TITLE
#define PULSOMETER_FACE_TITLE "PL"
#endif
#ifndef PULSOMETER_FACE_CALIBRATION_DEFAULT
#define PULSOMETER_FACE_CALIBRATION_DEFAULT (30)
#endif
#ifndef PULSOMETER_FACE_CALIBRATION_INCREMENT
#define PULSOMETER_FACE_CALIBRATION_INCREMENT (10)
#endif
// tick frequency will be 2 to this power Hz (0 for 1 Hz, 2 for 4 Hz, etc.)
#ifndef PULSOMETER_FACE_FREQUENCY_FACTOR
#define PULSOMETER_FACE_FREQUENCY_FACTOR (4ul)
#endif
#define PULSOMETER_FACE_FREQUENCY (1 << PULSOMETER_FACE_FREQUENCY_FACTOR) #define PULSOMETER_FACE_FREQUENCY (1 << PULSOMETER_FACE_FREQUENCY_FACTOR)
typedef struct {
bool measuring;
int16_t pulses;
int16_t ticks;
int8_t calibration;
} pulsometer_state_t;
static void pulsometer_display_title(pulsometer_state_t *pulsometer) {
watch_display_string(PULSOMETER_FACE_TITLE, 0);
}
static void pulsometer_display_calibration(pulsometer_state_t *pulsometer) {
char buf[3];
snprintf(buf, sizeof(buf), "%2hhd", pulsometer->calibration);
watch_display_string(buf, 2);
}
static void pulsometer_display_measurement(pulsometer_state_t *pulsometer) {
char buf[7];
snprintf(buf, sizeof(buf), "%-6hd", pulsometer->pulses);
watch_display_string(buf, 4);
}
static void pulsometer_indicate(pulsometer_state_t *pulsometer) {
if (pulsometer->measuring) {
watch_set_indicator(WATCH_INDICATOR_LAP);
} else {
watch_clear_indicator(WATCH_INDICATOR_LAP);
}
}
static void pulsometer_start_measurement(pulsometer_state_t *pulsometer) {
pulsometer->measuring = true;
pulsometer->pulses = INT16_MAX;
pulsometer->ticks = 0;
pulsometer_indicate(pulsometer);
movement_request_tick_frequency(PULSOMETER_FACE_FREQUENCY);
}
static void pulsometer_measure(pulsometer_state_t *pulsometer) {
if (!pulsometer->measuring) { return; }
pulsometer->ticks++;
float ticks_per_minute = 60 << PULSOMETER_FACE_FREQUENCY_FACTOR;
float pulses_while_button_held = ticks_per_minute / pulsometer->ticks;
float calibrated_pulses = pulses_while_button_held * pulsometer->calibration;
calibrated_pulses += 0.5f;
pulsometer->pulses = (int16_t) calibrated_pulses;
pulsometer_display_measurement(pulsometer);
}
static void pulsometer_stop_measurement(pulsometer_state_t *pulsometer) {
movement_request_tick_frequency(1);
pulsometer->measuring = false;
pulsometer_display_measurement(pulsometer);
pulsometer_indicate(pulsometer);
}
static void pulsometer_cycle_calibration(pulsometer_state_t *pulsometer, int8_t increment) {
if (pulsometer->measuring) { return; }
if (pulsometer->calibration <= 0) {
pulsometer->calibration = 1;
}
int8_t last = pulsometer->calibration;
pulsometer->calibration += increment;
if (pulsometer->calibration > 39) {
pulsometer->calibration = last == 39? 1 : 39;
}
pulsometer_display_calibration(pulsometer);
}
void pulsometer_face_setup(movement_settings_t *settings, uint8_t watch_face_index, void ** context_ptr) { void pulsometer_face_setup(movement_settings_t *settings, uint8_t watch_face_index, void ** context_ptr) {
(void) settings; (void) settings;
(void) watch_face_index; (void) watch_face_index;
if (*context_ptr == NULL) *context_ptr = malloc(sizeof(pulsometer_state_t));
if (*context_ptr == NULL) {
pulsometer_state_t *pulsometer = malloc(sizeof(pulsometer_state_t));
pulsometer->calibration = PULSOMETER_FACE_CALIBRATION_DEFAULT;
pulsometer->pulses = 0;
pulsometer->ticks = 0;
*context_ptr = pulsometer;
}
} }
void pulsometer_face_activate(movement_settings_t *settings, void *context) { void pulsometer_face_activate(movement_settings_t *settings, void *context) {
(void) settings; (void) settings;
memset(context, 0, sizeof(pulsometer_state_t));
pulsometer_state_t *pulsometer = context;
pulsometer->measuring = false;
pulsometer_display_title(pulsometer);
pulsometer_display_calibration(pulsometer);
pulsometer_display_measurement(pulsometer);
} }
bool pulsometer_face_loop(movement_event_t event, movement_settings_t *settings, void *context) { bool pulsometer_face_loop(movement_event_t event, movement_settings_t *settings, void *context) {
(void) settings; (void) settings;
pulsometer_state_t *pulsometer_state = (pulsometer_state_t *)context;
char buf[14]; pulsometer_state_t *pulsometer = (pulsometer_state_t *) context;
switch (event.event_type) { switch (event.event_type) {
case EVENT_ALARM_BUTTON_DOWN: case EVENT_ALARM_BUTTON_DOWN:
pulsometer_state->measuring = true; pulsometer_start_measurement(pulsometer);
pulsometer_state->pulse = 0xFFFF;
pulsometer_state->ticks = 0;
movement_request_tick_frequency(PULSOMETER_FACE_FREQUENCY);
break; break;
case EVENT_ALARM_BUTTON_UP: case EVENT_ALARM_BUTTON_UP:
case EVENT_ALARM_LONG_UP: case EVENT_ALARM_LONG_UP:
pulsometer_state->measuring = false; pulsometer_stop_measurement(pulsometer);
movement_request_tick_frequency(1);
break; break;
case EVENT_TICK: case EVENT_TICK:
if (pulsometer_state->pulse == 0 && !pulsometer_state->measuring) { pulsometer_measure(pulsometer);
switch (pulsometer_state->ticks % 5) { break;
case 0: case EVENT_LIGHT_BUTTON_UP:
watch_display_string(" Hold ", 2); pulsometer_cycle_calibration(pulsometer, 1);
break; break;
case 1: case EVENT_LIGHT_LONG_UP:
watch_display_string(" Alarn", 4); pulsometer_cycle_calibration(pulsometer, PULSOMETER_FACE_CALIBRATION_INCREMENT);
break; break;
case 2: case EVENT_LIGHT_BUTTON_DOWN:
watch_display_string("* Count ", 0); // Inhibit the LED
break;
case 3:
watch_display_string(" 30Beats ", 0);
break;
case 4:
watch_clear_display();
break;
}
pulsometer_state->ticks = (pulsometer_state->ticks + 1) % 5;
} else {
if (pulsometer_state->measuring && pulsometer_state->ticks) {
pulsometer_state->pulse = (int16_t)((30.0 * ((float)(60 << PULSOMETER_FACE_FREQUENCY_FACTOR) / (float)pulsometer_state->ticks)) + 0.5);
}
if (pulsometer_state->pulse > 240) {
watch_display_string(" Hi", 0);
} else if (pulsometer_state->pulse < 40) {
watch_display_string(" Lo", 0);
} else {
sprintf(buf, " %-3dbpn", pulsometer_state->pulse);
watch_display_string(buf, 0);
}
if (pulsometer_state->measuring) pulsometer_state->ticks++;
}
break; break;
case EVENT_TIMEOUT: case EVENT_TIMEOUT:
movement_move_to_face(0); movement_move_to_face(0);

View File

@ -1,7 +1,12 @@
/* SPDX-License-Identifier: MIT */
/* /*
* MIT License * MIT License
* *
* Copyright (c) 2022 Joey Castillo * Copyright © 2021-2022 Joey Castillo <joeycastillo@utexas.edu> <jose.castillo@gmail.com>
* Copyright © 2022 Alexsander Akers <me@a2.io>
* Copyright © 2023 Alex Utter <ooterness@gmail.com>
* Copyright © 2024 Matheus Afonso Martins Moreira <matheus.a.m.moreira@gmail.com> (https://www.matheusmoreira.com/)
* *
* Permission is hereby granted, free of charge, to any person obtaining a copy * Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal * of this software and associated documentation files (the "Software"), to deal
@ -28,38 +33,44 @@
/* /*
* PULSOMETER face * PULSOMETER face
* *
* The Pulsometer is an implementation of a sort of a classic mechanical * The pulsometer implements a classic mechanical watch complication.
* watch complication. A classic pulsometer complication involves a * A mechanical pulsometer involves a chronograph with a scale that
* chronograph with a scale calibrated for counting a certain number of * allows the user to compute the number of heart beats per minute
* heartbeats (often 30). You start it and begin counting heartbeats, and * in less time. The scale is calibrated, or graduated, for a fixed
* stop it after counting the specified number of beats. Once stopped, * number of heart beats, most often 30. The user starts the chronograph
* the needle will point to your heart rate. * and simultaneously begins counting the heart beats. The movement of
* * the chronograph's seconds hand over time automatically performs the
* The pulsometer on Sensor Watch flashes its instructions at launch: * computations required. When the calibrated number of heart beats
* Hold Alarm + count 30 beats. Using the hand on the side where you wear * is reached, the chronograph is stopped and the seconds hand shows
* your watch, touch your carotid artery (in your neck) and feel for your * the heart rate.
* pulse. Once you find it, use your other hand to press and hold the Alarm *
* button, and count your heartbeats. When you reach 30 beats, release the * The Sensor Watch pulsometer improves this design with user calibration:
* Alarm button. The display will show a number such as 60 bpm; this is * it can be graduated to any value between 1 and 39 pulsations per minute.
* your heart rate in beats per minute. * The default is still 30, mirroring the classic pulsometer calibration.
* * This feature allows the user to reconfigure the pulsometer to count
* Two notes: * many other types of periodic minutely events, making it more versatile.
* o For the first few seconds of a measurement, the display will read Hi. * For example, it can be set to 5 respirations per minute to turn it into
* This indicates that its too early for the measured value to be a valid * an asthmometer, a nearly identical mechanical watch complication
* heart rate. Once the measurement is below 240 bpm, the display will update. * that doctors might use to quickly measure respiratory rate.
* o If you hold the button down for more than 45 seconds, the display will *
* read Lo. If it took this long for you to count 30 heartbeats, this * To use the pulsometer, hold the ALARM button and count the pulses.
* indicates that your heart rate is below 40 beats per minute. * When the calibrated number of pulses is reached, release the button.
* The display will show the number of pulses per minute.
*
* In order to measure heart rate, feel for a pulse using the hand with
* the watch while holding the button down with the other.
* The pulse can be easily felt on the carotid artery of the neck.
*
* In order to measure breathing rate, simply hold the ALARM button
* and count the number of breaths.
*
* To calibrate the pulsometer, press LIGHT
* to cycle to the next integer calibration.
* Long press LIGHT to cycle it by 10.
*/ */
#include "movement.h" #include "movement.h"
typedef struct {
bool measuring;
int16_t pulse;
int16_t ticks;
} pulsometer_state_t;
void pulsometer_face_setup(movement_settings_t *settings, uint8_t watch_face_index, void ** context_ptr); void pulsometer_face_setup(movement_settings_t *settings, uint8_t watch_face_index, void ** context_ptr);
void pulsometer_face_activate(movement_settings_t *settings, void *context); void pulsometer_face_activate(movement_settings_t *settings, void *context);
bool pulsometer_face_loop(movement_event_t event, movement_settings_t *settings, void *context); bool pulsometer_face_loop(movement_event_t event, movement_settings_t *settings, void *context);