thinking through deep sleep stuff

This commit is contained in:
Joey Castillo 2021-08-02 16:14:47 -04:00
parent 34945d78e9
commit 8b92a1b44a
5 changed files with 206 additions and 121 deletions

View File

@ -1,11 +1,11 @@
#include <stdio.h> #include <stdio.h>
#include <string.h> #include <string.h>
#include "watch.h"
#include "app.h" #include "app.h"
// these are implemented in main.c, just want to have access to them here. //////////////////////////////////////////////////////////////////////////////////////////
void uart_putc(char c); // This section sets up types and storage for our application state.
void uart_puts(char *s); // You can tear this out and replace it with whatever you want.
typedef enum ApplicationMode { typedef enum ApplicationMode {
MODE_HELLO = 0, MODE_HELLO = 0,
MODE_THERE MODE_THERE
@ -21,35 +21,64 @@ typedef enum LightColor {
typedef struct ApplicationState { typedef struct ApplicationState {
ApplicationMode mode; ApplicationMode mode;
LightColor color; LightColor color;
uint8_t wake_count;
} ApplicationState; } ApplicationState;
ApplicationState applicationState; ApplicationState applicationState;
void cb_light_pressed() {
applicationState.color = (applicationState.color + 1) % 4;
}
void cb_mode_pressed() { //////////////////////////////////////////////////////////////////////////////////////////
applicationState.mode = (applicationState.mode + 1) % 2; // This section defines the callbacks for our button press events (implemented at bottom).
} // Add any other callbacks you may need either here or in another file.
void cb_light_pressed();
void cb_mode_pressed();
void cb_alarm_pressed();
//////////////////////////////////////////////////////////////////////////////////////////
// This section contains the required functions for any watch app. You should tear out
// all the code in these functions when writing your app, but you must implement all
// of the functions, even if they are empty stubs. You can also replace the documentation
// lines with documentation that describes what your functions do!
/** /**
* @brief the app_init function is like setup() in Arduino. It is called once when the * @brief the app_init function is called before anything else. Use it to set up any
* program begins. You should set pin modes and enable any peripherals you want to * internal data structures or application state required by your app.
* set up (real-time clock, I2C, etc.)
*
* @note If your app enters the ultra-low power BACKUP sleep mode, this function will
* be called again when it wakes from that deep sleep state. In this state, the RTC will
* still be configured with the correct date and time.
*/ */
void app_init() { void app_init() {
memset(&applicationState, 0, sizeof(applicationState)); memset(&applicationState, 0, sizeof(applicationState));
}
watch_enable_led(false); /**
* @brief the app_wake_from_deep_sleep function is only called if your app is waking from
* the ultra-low power BACKUP sleep mode. You may have chosen to store some state in the
* RTC's backup registers prior to entering this mode. You may restore that state here.
*
* @see watch_enter_deep_sleep()
*/
void app_wake_from_deep_sleep() {
// TODO: deep sleep demo
}
/**
* @brief the app_setup function is like setup() in Arduino. It is called once when the
* program begins. You should set pin modes and enable any peripherals you want to
* set up (real-time clock, I2C, etc.) Depending on your application, you may or may not
* want to configure sensors on your sensor board here. For example, a low-power
* accelerometer that will run at all times should be configured here, whereas you may
* want to enable a more power-hungry environmental sensor only when you need it.
*
* @note If your app enters the ultra-low power BACKUP sleep mode, this function will
* be called again when it wakes from that deep sleep state. In this state, the RTC will
* still be configured with the correct date and time.
*/
void app_setup() {
watch_enable_led(false); // enable LED with plain digital IO, not PWM
watch_enable_buttons(); watch_enable_buttons();
watch_register_button_callback(BTN_LIGHT, cb_light_pressed); watch_register_button_callback(BTN_LIGHT, cb_light_pressed);
watch_register_button_callback(BTN_MODE, cb_mode_pressed); watch_register_button_callback(BTN_MODE, cb_mode_pressed);
watch_register_button_callback(BTN_ALARM, cb_alarm_pressed);
watch_enable_display(); watch_enable_display();
} }
@ -68,13 +97,15 @@ void app_prepare_for_sleep() {
* STANDBY sleep mode. * STANDBY sleep mode.
*/ */
void app_wake_from_sleep() { void app_wake_from_sleep() {
applicationState.wake_count++;
} }
/** /**
* @brief the app_loop function is called once on app startup and then again each time * @brief the app_loop function is called once on app startup and then again each time
* the watch STANDBY sleep mode. * the watch STANDBY sleep mode.
*/ */
void app_loop() { bool app_loop() {
// set the LED to a color
switch (applicationState.color) { switch (applicationState.color) {
case COLOR_RED: case COLOR_RED:
watch_set_led_red(); watch_set_led_red();
@ -89,6 +120,13 @@ void app_loop() {
applicationState.color = COLOR_OFF; applicationState.color = COLOR_OFF;
watch_set_led_off(); watch_set_led_off();
} }
// Display the number of times we've woken up (modulo 32 to fit in 2 digits at top right)
char buf[3] = {0};
sprintf(buf, "%2d", applicationState.wake_count % 32);
watch_display_string(buf, 2);
// display "Hello there" text
switch (applicationState.mode) { switch (applicationState.mode) {
case MODE_HELLO: case MODE_HELLO:
watch_display_string("Hello", 5); watch_display_string("Hello", 5);
@ -97,4 +135,25 @@ void app_loop() {
watch_display_string("there", 5); watch_display_string("there", 5);
break; break;
} }
// Wait a moment to debounce button input
delay_ms(250);
return true;
} }
//////////////////////////////////////////////////////////////////////////////////////////
// Implementations for our callback functions. Replace these with whatever functionality
// your app requires.
void cb_light_pressed() {
applicationState.color = (applicationState.color + 1) % 4;
}
void cb_mode_pressed() {
applicationState.mode = (applicationState.mode + 1) % 2;
}
void cb_alarm_pressed() {
// TODO: deep sleep demo
}

View File

@ -1,29 +1,33 @@
/** /**
* Header file for Sensor Watch application * Header file for Sensor Watch application
* *
* Ideally you should implement your app entirely within these functions, as well as any * You should be able to write a watch app by simply implementing these functions
* interrupt callbacks you register with the watch API. The general flow is as follows: * and declaring callbacks for various GPIO and peripheral interrupts. The main.c
* * file takes care of calling these functions for you. The general flow:
* 1. main.c configures the watch *
* 2. main.c calls your app_init() function. * 1. Your app_init() function is called.
* - This method should only be used to set your initial application state.
* 2. If your app is waking from BACKUP, app_wake_from_deep_sleep() is called.
* - If you saved state in the RTC's backup registers, you can restore it here.
* 3. Your app_setup() method is called.
* - You may wish to enable some functionality and peripherals here. * - You may wish to enable some functionality and peripherals here.
* - You should definitely set up some wake-up sources here. * - You should definitely set up some interrupts here.
* 3. main.c calls your app_loop() function. * 4. The main run loop begins: your app_loop() function is called.
* - Run code and update your UI here. * - Run code and update your UI here.
* 4. main.c calls your app_prepare_for_sleep() function. * - Return true if your app is prepared to enter STANDBY mode.
* - Consider resetting any state that was set in your wakeup callback here. * 5. This step differs depending on the value returned by app_loop:
* - You may also want to disable / depower external sensors or peripherals here. * - If you returned false, execution resumes at (4).
* 5. main.c enters the STANDBY sleep mode. * - If you returned true, app_prepare_for_sleep() is called; execution moves on to (6).
* 6. The microcontroller enters the STANDBY sleep mode.
* - No user code will run, and the watch will enter a low power mode. * - No user code will run, and the watch will enter a low power mode.
* - The watch will remain in this state until something from (2) wakes it. * - The watch will remain in this state until an interrupt wakes it.
* 6. main.c calls your app_wake_from_sleep() function. * 7. Once woken from STANDBY, your app_wake_from_sleep() function is called.
* - You may wish to re-enable any peripherals you disabled. * - After this, execution resumes at (4).
* - After this, execution resumes at step (3).
*/ */
#include "watch.h"
void app_init(); void app_init();
void app_loop(); void app_wake_from_deep_sleep();
void app_setup();
bool app_loop();
void app_prepare_for_sleep(); void app_prepare_for_sleep();
void app_wake_from_sleep(); void app_wake_from_sleep();

View File

@ -1,6 +1,6 @@
/* /*
* Copyright (c) 2021, Joey Castillo * Copyright (c) 2021, Joey Castillo
* SAML22 starter project is Copyright (c) 2014-2017, Alex Taradov <alex@taradov.com> * UART methods are Copyright (c) 2014-2017, Alex Taradov <alex@taradov.com>
* All rights reserved. * All rights reserved.
* *
* Redistribution and use in source and binary forms, with or without * Redistribution and use in source and binary forms, with or without
@ -82,26 +82,35 @@ void uart_puts(char *s) {
while (*s) uart_putc(*s++); while (*s) uart_putc(*s++);
} }
//-----------------------------------------------------------------------------
static void sys_init(void) {
uart_puts("init_mcu\n");
init_mcu();
uart_puts("watch_init\n");
watch_init();
uart_puts("app_init\n");
app_init();
}
//-----------------------------------------------------------------------------
int main(void) { int main(void) {
// Temporary, for debugging.
uart_init(115200); uart_init(115200);
sys_init();
// ASF code. Initialize the MCU with configuration options from Atmel Studio.
init_mcu();
// User code. Give the app a chance to initialize its data structures and state.
app_init();
// At this point, if the RTC peripheral is enabled, we are waking from BACKUP.
if (watch_rtc_is_enabled()) {
// User code. Give the application a chance to restore state from backup registers.
app_wake_from_deep_sleep();
}
// Watch library code. Set initial parameters for the device and enable the RTC.
watch_init();
// User code. Give the app a chance to enable and set up peripherals.
app_setup();
while (1) { while (1) {
app_loop(); bool can_sleep = app_loop();
app_prepare_for_sleep(); if (can_sleep) {
sleep(4); app_prepare_for_sleep();
app_wake_from_sleep(); sleep(4);
app_wake_from_sleep();
}
} }
return 0; return 0;

View File

@ -1,15 +1,8 @@
/*
* watch.c
*
* Created: 4/25/2021 10:22:10 AM
* Author: joeycastillo
*/
#include "watch.h" #include "watch.h"
#include <stdlib.h> #include <stdlib.h>
void watch_init() { void watch_init() {
// use switching regulator // Use switching regulator for lower power consumption.
SUPC->VREG.bit.SEL = 1; SUPC->VREG.bit.SEL = 1;
while(!SUPC->STATUS.bit.VREGRDY); while(!SUPC->STATUS.bit.VREGRDY);
@ -17,9 +10,8 @@ void watch_init() {
CALENDAR_0_init(); CALENDAR_0_init();
calendar_enable(&CALENDAR_0); calendar_enable(&CALENDAR_0);
// TODO: use performance level 0? // Not sure if this belongs in every app -- is there a power impact?
// _set_performance_level(0); delay_driver_init();
// hri_pm_write_PLCFG_PLDIS_bit(PM, true);
} }
static const uint8_t Character_Set[] = static const uint8_t Character_Set[] =
@ -258,6 +250,10 @@ void watch_set_led_off() {
} }
} }
bool watch_rtc_is_enabled() {
return RTC->MODE0.CTRLA.bit.ENABLE;
}
void watch_set_date_time(struct calendar_date_time date_time) { void watch_set_date_time(struct calendar_date_time date_time) {
calendar_set_date(&CALENDAR_0, &date_time.date); calendar_set_date(&CALENDAR_0, &date_time.date);
calendar_set_time(&CALENDAR_0, &date_time.time); calendar_set_time(&CALENDAR_0, &date_time.time);
@ -314,7 +310,7 @@ void watch_enable_pull_down(const uint8_t pin) {
gpio_set_pin_pull_mode(pin, GPIO_PULL_DOWN); gpio_set_pin_pull_mode(pin, GPIO_PULL_DOWN);
} }
bool watch_get_pin_level(const uint8_t pin, const bool level) { bool watch_get_pin_level(const uint8_t pin) {
return gpio_get_pin_level(pin); return gpio_get_pin_level(pin);
} }
@ -348,3 +344,23 @@ void watch_i2c_receive(int16_t addr, uint8_t *buf, uint16_t length) {
i2c_m_sync_set_slaveaddr(&I2C_0, addr, I2C_M_SEVEN); i2c_m_sync_set_slaveaddr(&I2C_0, addr, I2C_M_SEVEN);
io_read(I2C_0_io, buf, length); io_read(I2C_0_io, buf, length);
} }
void watch_store_backup_data(uint32_t data, uint8_t reg) {
if (reg < 8) {
RTC->MODE0.BKUP[reg].reg = data;
}
}
uint32_t watch_get_backup_data(uint8_t reg) {
if (reg < 8) {
return RTC->MODE0.BKUP[reg].reg;
}
return 0;
}
void watch_enter_deep_sleep(){
// Not yet implemented.
// TODO: enable tamper interrupt on ALARM pin.
// sleep(5);
}

View File

@ -1,55 +1,52 @@
/* #ifndef WATCH_H_
* Watch.h #define WATCH_H_
* #include <stdint.h>
* Created: 4/25/2021 8:29:16 AM #include "driver_init.h"
* Author: joeycastillo #include "hpl_calendar.h"
*/ #include "hal_ext_irq.h"
void watch_init();
#ifndef WATCH_H_
#define WATCH_H_ void watch_enable_display();
#include <stdint.h> void watch_display_pixel(uint8_t com, uint8_t seg);
#include "driver_init.h" void watch_display_string(char *string, uint8_t position);
#include "hpl_calendar.h"
#include "hal_ext_irq.h" void watch_enable_led(bool pwm);
void watch_disable_led(bool pwm);
void watch_init(); void watch_set_led_color(uint16_t red, uint16_t green);
void watch_set_led_red();
void watch_enable_display(); void watch_set_led_green();
void watch_display_pixel(uint8_t com, uint8_t seg); void watch_set_led_yellow();
void watch_display_string(char *string, uint8_t position); void watch_set_led_off();
void watch_enable_led(bool pwm); bool watch_rtc_is_enabled();
void watch_disable_led(bool pwm); void watch_set_date_time(struct calendar_date_time date_time);
void watch_set_led_color(uint16_t red, uint16_t green); void watch_get_date_time(struct calendar_date_time *date_time);
void watch_set_led_red();
void watch_set_led_green(); void watch_enable_tick_callback(ext_irq_cb_t callback);
void watch_set_led_yellow();
void watch_set_led_off(); void watch_enable_analog(const uint8_t pin);
void watch_set_date_time(struct calendar_date_time date_time); void watch_enable_buttons();
void watch_get_date_time(struct calendar_date_time *date_time); void watch_register_button_callback(const uint32_t pin, ext_irq_cb_t callback);
void watch_enable_tick_callback(ext_irq_cb_t callback); void watch_enable_digital_input(const uint8_t pin);
void watch_enable_pull_up(const uint8_t pin);
void watch_enable_analog(const uint8_t pin); void watch_enable_pull_down(const uint8_t pin);
bool watch_get_pin_level(const uint8_t pin);
void watch_enable_buttons();
void watch_register_button_callback(const uint32_t pin, ext_irq_cb_t callback); void watch_enable_digital_output(const uint8_t pin);
void watch_disable_digital_output(const uint8_t pin);
void watch_enable_digital_input(const uint8_t pin); void watch_set_pin_level(const uint8_t pin, const bool level);
void watch_enable_pull_up(const uint8_t pin);
void watch_enable_pull_down(const uint8_t pin); struct io_descriptor *I2C_0_io;
bool watch_get_pin_level(const uint8_t pin, const bool level);
void watch_enable_i2c();
void watch_enable_digital_output(const uint8_t pin); void watch_i2c_send(int16_t addr, uint8_t *buf, uint16_t length);
void watch_disable_digital_output(const uint8_t pin); void watch_i2c_receive(int16_t addr, uint8_t *buf, uint16_t length);
void watch_set_pin_level(const uint8_t pin, const bool level);
void watch_store_backup_data(uint32_t data, uint8_t reg);
struct io_descriptor *I2C_0_io; uint32_t watch_get_backup_data(uint8_t reg);
void watch_enter_deep_sleep();
void watch_enable_i2c();
void watch_i2c_send(int16_t addr, uint8_t *buf, uint16_t length);
void watch_i2c_receive(int16_t addr, uint8_t *buf, uint16_t length);
#endif /* WATCH_H_ */ #endif /* WATCH_H_ */