/* * MIT License * * Copyright (c) 2023 Tobias Raayoni Last / @randogoth * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include "sunriset.h" #include "watch.h" #include "watch_utility.h" #include "planetary_hours_face.h" #if __EMSCRIPTEN__ #include #endif // STATIC FUNCTIONS AND CONSTANTS ///////////////////////////////////////////// /** @brief Planetary rulers in the Chaldean order from slowest to fastest * @details Planetary rulers in the Chaldean order from slowest to fastest: * Jupiter, Mars, Sun, Venus, Mercury, Moon */ static const char planets[7][3] = {"Sa", "Ju", "Ma", "So", "Ve", "Me", "Lu"}; // Latin static const char planetes[7][3] = {"Ch", "Ze", "Ar", "He", "Af", "Hr", "Se"}; // Greek /** @brief Ruler of each weekday for easy lookup */ static const uint8_t plindex[7] = {3, 6, 2, 5, 1, 4, 0}; // day ruler index /** @brief Astrological symbol for each planet */ static void _planetary_icon(uint8_t planet) { watch_clear_pixel(0, 13); watch_clear_pixel(0, 14); watch_clear_pixel(1, 13); watch_clear_pixel(1, 14); watch_clear_pixel(1, 15); watch_clear_pixel(2, 13); watch_clear_pixel(2, 14); watch_clear_pixel(2, 15); switch (planet) { case 0: // Saturn watch_set_pixel(0, 14); watch_set_pixel(2, 14); watch_set_pixel(1, 15); watch_set_pixel(2, 13); break; case 1: // Jupiter watch_set_pixel(0, 14); watch_set_pixel(1, 15); watch_set_pixel(1, 14); break; case 2: // Mars watch_set_pixel(2, 14); watch_set_pixel(2, 15); watch_set_pixel(1, 15); watch_set_pixel(2, 13); watch_set_pixel(1, 13);\ break; case 3: // Sol watch_set_pixel(0, 14); watch_set_pixel(2, 14); watch_set_pixel(1, 13); watch_set_pixel(2, 13); watch_set_pixel(0, 13); watch_set_pixel(2, 15); break; case 4: // Venus watch_set_pixel(0, 14); watch_set_pixel(0, 13); watch_set_pixel(1, 13); watch_set_pixel(1, 15); watch_set_pixel(1, 14); break; case 5: // Mercury watch_set_pixel(0, 14); watch_set_pixel(1, 13); watch_set_pixel(1, 14); watch_set_pixel(1, 15); watch_set_pixel(2, 15); break; case 6: // Luna watch_set_pixel(2, 14); watch_set_pixel(2, 15); watch_set_pixel(2, 13); break; } } /** @details A solar phase can be a day phase between sunrise and sunset or an alternating night phase. * This function calculates the start and end of the current phase based on a given geographic location. * It also calculates the start of the next following phase. */ static void _planetary_solar_phases(movement_settings_t *settings, planetary_hours_state_t *state) { uint8_t phase, h; double sunrise, sunset; double hour_duration, next_hour_duration; uint32_t now_epoch; uint32_t sunrise_epoch_today, sunset_epoch_today, midnight_epoch_today; uint32_t sunset_epoch_yesterday, midnight_epoch_yesterday; uint32_t sunrise_epoch_tomorrow, sunset_epoch_tomorrow, midnight_epoch_tomorrow; movement_location_t movement_location = (movement_location_t) watch_get_backup_data(1); // check if we have a location. If not, display error if (movement_location.reg == 0) { watch_display_string(" no Loc", 0); state->no_location = true; return; } // location detected state->no_location = false; watch_date_time date_time = watch_rtc_get_date_time(); // the current local date / time watch_date_time utc_now = watch_utility_date_time_convert_zone(date_time, movement_timezone_offsets[settings->bit.time_zone] * 60, 0); // the current date / time in UTC watch_date_time scratch_time; // scratchpad, contains different values at different times watch_date_time midnight; scratch_time.reg = midnight.reg = utc_now.reg; midnight.unit.hour = midnight.unit.minute = midnight.unit.second = 0; // start of the day at midnight // get location coordinate int16_t lat_centi = (int16_t)movement_location.bit.latitude; int16_t lon_centi = (int16_t)movement_location.bit.longitude; double lat = (double)lat_centi / 100.0; double lon = (double)lon_centi / 100.0; // save UTC offset state->utc_offset = ((double)movement_timezone_offsets[settings->bit.time_zone]) / 60.0; // calculate sunrise and sunset of current day in decimal hours after midnight sun_rise_set(scratch_time.unit.year + WATCH_RTC_REFERENCE_YEAR, scratch_time.unit.month, scratch_time.unit.day, lon, lat, &sunrise, &sunset); // calculate sunrise and sunset UNIX timestamps midnight_epoch_today = watch_utility_date_time_to_unix_time(midnight, 0); sunrise_epoch_today = midnight_epoch_today + sunrise * 3600; sunset_epoch_today = midnight_epoch_today + sunset * 3600; // go back to yesterday and calculate sunset midnight_epoch_yesterday = midnight_epoch_today - 86400; scratch_time = watch_utility_date_time_from_unix_time(midnight_epoch_yesterday, 0); sun_rise_set(scratch_time.unit.year + WATCH_RTC_REFERENCE_YEAR, scratch_time.unit.month, scratch_time.unit.day, lon, lat, &sunrise, &sunset); sunset_epoch_yesterday = midnight_epoch_yesterday + sunset * 3600; // go to tomorrow and calculate sunrise and sunset midnight_epoch_tomorrow = midnight_epoch_today + 86400; scratch_time = watch_utility_date_time_from_unix_time(midnight_epoch_tomorrow, 0); sun_rise_set(scratch_time.unit.year + WATCH_RTC_REFERENCE_YEAR, scratch_time.unit.month, scratch_time.unit.day, lon, lat, &sunrise, &sunset); sunrise_epoch_tomorrow = midnight_epoch_tomorrow + sunrise * 3600; sunset_epoch_tomorrow = midnight_epoch_tomorrow + sunset * 3600; // get UNIX epoch time now_epoch = watch_utility_date_time_to_unix_time(utc_now, 0); // by default we assume it is daytime (phase 1) between sunrise and sunset phase = 1; state->phase_start = sunrise_epoch_today; state->phase_end = sunset_epoch_today; state->phase_next = sunrise_epoch_tomorrow; state->start_at_night = false; // night time calculations if ( now_epoch < sunrise_epoch_today && now_epoch < sunset_epoch_today ) phase = 0; // morning before dawn if ( now_epoch > sunrise_epoch_today && now_epoch >= sunset_epoch_today ) phase = 2; // evening after dusk // phase 0: we are before sunrise if ( phase == 0) { state->phase_start = sunset_epoch_yesterday; state->phase_end = sunrise_epoch_today; state->phase_next = sunset_epoch_today; state->start_at_night = true; } // phase 2: we are after sunset if ( phase == 2) { state->phase_start = sunset_epoch_today; state->phase_end = sunrise_epoch_tomorrow; state->phase_next = sunset_epoch_tomorrow; state->start_at_night = true; } // calculate the duration of a planetary hour during this and the next solar phase hour_duration = ( state->phase_end - state->phase_start ) / 12.0; next_hour_duration = ( state->phase_next - state->phase_end ) / 12.0; // populate list of 24 planetary hour start points in UNIX timestamp format // starting from the beginning of the current phase for ( h = 0; h < 24; h++ ) { if ( h < 12 ) state->planetary_hours[h] = state->phase_start + h * hour_duration; // current phase else state->planetary_hours[h] = state->phase_end + ( h - 12 ) * next_hour_duration; // next phase } // initialize state->hour = 0; state->ruler = 0; state->skip_to_current = true; } /** @details A planetary hour is one of exactly twelve hours of a solar phase. Its length varies. * This function calculates the current planetary hour and divides it up into relative minutes and seconds. * It also calculates the current planetary ruler of the hour and of the day. */ static void _planetary_hours(movement_settings_t *settings, planetary_hours_state_t *state) { char buf[14]; char ruler[3]; uint8_t weekday, planet, planetary_hour; uint32_t current_hour_epoch; watch_date_time scratch_time; // check if we have a location. If not, display error if ( state->no_location ) { watch_display_string(" no Loc", 0); return; } // get current time watch_date_time date_time = watch_rtc_get_date_time(); // the current local date / time watch_date_time utc_now = watch_utility_date_time_convert_zone(date_time, movement_timezone_offsets[settings->bit.time_zone] * 60, 0); // the current date / time in UTC current_hour_epoch = watch_utility_date_time_to_unix_time(utc_now, 0); // set the current planetary hour as default screen if ( state->skip_to_current ) { state->hour = ( current_hour_epoch - state->phase_start ) / (( state->phase_end - state->phase_start ) / 12.0); state->skip_to_current = false; } // when current phase ends calculate the next phase if ( watch_utility_date_time_to_unix_time(utc_now, 0) >= state->phase_end ) { _planetary_solar_phases(settings, state); return; } if (settings->bit.clock_mode_24h) watch_set_indicator(WATCH_INDICATOR_24H); // roll over hour iterator if ( state->hour < 0 ) state->hour = 23; if ( state->hour > 23 ) state->hour = 0; if ( state->ruler < 0 ) state->hour = 2; if ( state->ruler > 2 ) state->hour = 0; // clear indicators watch_clear_indicator(WATCH_INDICATOR_BELL); watch_clear_indicator(WATCH_INDICATOR_LAP); // display bell indicator when displaying the current planetary hour if ( state->hour < 24 ) if ( current_hour_epoch >= state->planetary_hours[state->hour] && current_hour_epoch < state->planetary_hours[state->hour + 1]) { watch_set_indicator(WATCH_INDICATOR_BELL); } // display LAP indicator when the hours of the next phase belong to the next day if ( state->start_at_night == true && state->hour > 11 ) watch_set_indicator(WATCH_INDICATOR_LAP); // determine weekday from start of current phase scratch_time = watch_utility_date_time_from_unix_time(state->phase_start, 0); scratch_time = watch_utility_date_time_convert_zone(scratch_time, 0, state->utc_offset * 3600); weekday = watch_utility_get_iso8601_weekday_number(scratch_time.unit.year, scratch_time.unit.month, scratch_time.unit.day) - 1; // which planetary hour are we in? planetary_hour = state->hour % 12; // accomodate night hour count if ( state->hour < 12 ) { if ( state->start_at_night ) { planetary_hour += 12; } } else { if ( state->start_at_night ) { weekday = ( weekday + 1 ) % 7; } else { planetary_hour += 12; } } // make datetime object for selected planetary hour scratch_time = watch_utility_date_time_from_unix_time(state->planetary_hours[state->hour], 0); scratch_time = watch_utility_date_time_convert_zone(scratch_time, 0, state->utc_offset * 3600); // round minutes if (scratch_time.unit.second < 30 && scratch_time.unit.minute > 0 ) scratch_time.unit.minute--; else if ( scratch_time.unit.minute < 59 ) scratch_time.unit.minute++; // if we are in 12 hour mode, do some cleanup if (!settings->bit.clock_mode_24h) { if (scratch_time.unit.hour < 12) { watch_clear_indicator(WATCH_INDICATOR_PM); } else { watch_set_indicator(WATCH_INDICATOR_PM); } scratch_time.unit.hour %= 12; if (scratch_time.unit.hour == 0) scratch_time.unit.hour = 12; } // planetary ruler of the hour planet = ( plindex[weekday] + planetary_hour ) % 7; // latin or greek ruler names or astrological symbol if ( state->ruler == 0 ) strncpy(ruler, planets[planet], 3); if ( state->ruler == 1 ) strncpy(ruler, planetes[planet], 3); if ( state->ruler == 2 ) strncpy(ruler, " ", 3); // display planetary time with ruler of the hour or ruler of the day sprintf(buf, "%s%2d%2d%02d ", ruler, (planetary_hour % 24) + 1, scratch_time.unit.hour, scratch_time.unit.minute); watch_set_colon(); watch_display_string(buf, 0); if ( state->ruler == 2 ) _planetary_icon(planet); } // PUBLIC WATCH FACE FUNCTIONS //////////////////////////////////////////////// void planetary_hours_face_setup(movement_settings_t *settings, uint8_t watch_face_index, void ** context_ptr) { (void) watch_face_index; (void) settings; if (*context_ptr == NULL) { *context_ptr = malloc(sizeof(planetary_hours_state_t)); memset(*context_ptr, 0, sizeof(planetary_hours_state_t)); } } void planetary_hours_face_activate(movement_settings_t *settings, void *context) { (void) settings; if (watch_tick_animation_is_running()) watch_stop_tick_animation(); #if __EMSCRIPTEN__ int16_t browser_lat = EM_ASM_INT({ return lat; }); int16_t browser_lon = EM_ASM_INT({ return lon; }); if ((watch_get_backup_data(1) == 0) && (browser_lat || browser_lon)) { movement_location_t browser_loc; browser_loc.bit.latitude = browser_lat; browser_loc.bit.longitude = browser_lon; watch_store_backup_data(browser_loc.reg, 1); } #endif planetary_hours_state_t *state = (planetary_hours_state_t *)context; _planetary_solar_phases(settings, state); } bool planetary_hours_face_loop(movement_event_t event, movement_settings_t *settings, void *context) { planetary_hours_state_t *state = (planetary_hours_state_t *)context; switch (event.event_type) { case EVENT_ACTIVATE: // Show your initial UI here. watch_clear_indicator(WATCH_INDICATOR_PM); watch_clear_indicator(WATCH_INDICATOR_24H); _planetary_hours(settings, state); break; case EVENT_LIGHT_BUTTON_UP: state->ruler = (state->ruler + 1) % 3; _planetary_hours(settings, state); break; case EVENT_LIGHT_LONG_PRESS: state->skip_to_current = true; _planetary_hours(settings, state); break; case EVENT_ALARM_BUTTON_UP: state->hour++; _planetary_hours(settings, state); break; case EVENT_ALARM_LONG_PRESS: state->hour--; _planetary_hours(settings, state); break; default: return movement_default_loop_handler(event, settings); } return true; } void planetary_hours_face_resign(movement_settings_t *settings, void *context) { (void) settings; (void) context; }