/* * MIT License * * Copyright (c) 2023 Tobias Raayoni Last / @randogoth * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include "sunriset.h" #include "watch.h" #include "watch_utility.h" #include "planetary_time_face.h" #if __EMSCRIPTEN__ #include #endif // STATIC FUNCTIONS AND CONSTANTS ///////////////////////////////////////////// /** @brief Planetary rulers in the Chaldean order from slowest to fastest * @details Planetary rulers in the Chaldean order from slowest to fastest: * Jupiter, Mars, Sun, Venus, Mercury, Moon */ static const char planets[7][3] = {"Sa", "Ju", "Ma", "So", "Ve", "Me", "Lu"}; // Latin static const char planetes[7][3] = {"Ch", "Ze", "Ar", "He", "Af", "Hr", "Se"}; // Greek /** @brief Ruler of each weekday for easy lookup */ static const uint8_t plindex[7] = {3, 6, 2, 5, 1, 4, 0}; // day ruler index /** @brief Astrological symbol for each planet */ static void _planetary_icon(uint8_t planet) { watch_clear_pixel(0, 13); watch_clear_pixel(0, 14); watch_clear_pixel(1, 13); watch_clear_pixel(1, 14); watch_clear_pixel(1, 15); watch_clear_pixel(2, 13); watch_clear_pixel(2, 14); watch_clear_pixel(2, 15); switch (planet) { case 0: // Saturn watch_set_pixel(0, 14); watch_set_pixel(2, 14); watch_set_pixel(1, 15); watch_set_pixel(2, 13); break; case 1: // Jupiter watch_set_pixel(0, 14); watch_set_pixel(1, 15); watch_set_pixel(1, 14); break; case 2: // Mars watch_set_pixel(2, 14); watch_set_pixel(2, 15); watch_set_pixel(1, 15); watch_set_pixel(2, 13); watch_set_pixel(1, 13);\ break; case 3: // Sol watch_set_pixel(0, 14); watch_set_pixel(2, 14); watch_set_pixel(1, 13); watch_set_pixel(2, 13); watch_set_pixel(0, 13); watch_set_pixel(2, 15); break; case 4: // Venus watch_set_pixel(0, 14); watch_set_pixel(0, 13); watch_set_pixel(1, 13); watch_set_pixel(1, 15); watch_set_pixel(1, 14); break; case 5: // Mercury watch_set_pixel(0, 14); watch_set_pixel(1, 13); watch_set_pixel(1, 14); watch_set_pixel(1, 15); watch_set_pixel(2, 15); break; case 6: // Luna watch_set_pixel(2, 14); watch_set_pixel(2, 15); watch_set_pixel(2, 13); break; } } /** @details solar phase can be a day phase between sunrise and sunset or an alternating night phase. * This function calculates the start and end of the current phase based on a given geographic location. */ static void _planetary_solar_phase(movement_settings_t *settings, planetary_time_state_t *state) { uint8_t phase; double sunrise, sunset; uint32_t now_epoch, sunrise_epoch, sunset_epoch, midnight_epoch; movement_location_t movement_location = (movement_location_t) watch_get_backup_data(1); // check if we have a location. If not, display error if (movement_location.reg == 0) { watch_display_string(" no Loc", 0); state->no_location = true; return; } // location detected state->no_location = false; watch_date_time date_time = watch_rtc_get_date_time(); // the current local date / time watch_date_time utc_now = watch_utility_date_time_convert_zone(date_time, movement_timezone_offsets[settings->bit.time_zone] * 60, 0); // the current date / time in UTC watch_date_time scratch_time; // scratchpad, contains different values at different times watch_date_time midnight; scratch_time.reg = midnight.reg = utc_now.reg; midnight.unit.hour = midnight.unit.minute = midnight.unit.second = 0; // start of the day at midnight // get location coordinate int16_t lat_centi = (int16_t)movement_location.bit.latitude; int16_t lon_centi = (int16_t)movement_location.bit.longitude; double lat = (double)lat_centi / 100.0; double lon = (double)lon_centi / 100.0; // save UTC offset state->utc_offset = ((double)movement_timezone_offsets[settings->bit.time_zone]) / 60.0; // get UNIX epoch time now_epoch = watch_utility_date_time_to_unix_time(utc_now, 0); midnight_epoch = watch_utility_date_time_to_unix_time(midnight, 0); // calculate sunrise and sunset of current day in decimal hours after midnight sun_rise_set(scratch_time.unit.year + WATCH_RTC_REFERENCE_YEAR, scratch_time.unit.month, scratch_time.unit.day, lon, lat, &sunrise, &sunset); // calculate sunrise and sunset UNIX timestamps sunrise_epoch = midnight_epoch + sunrise * 3600; sunset_epoch = midnight_epoch + sunset * 3600; // by default we assume it is daytime (phase 1) between sunrise and sunset phase = 1; state->night = false; state->phase_start = sunrise_epoch; state->phase_end = sunset_epoch; // night time calculations if ( now_epoch < sunrise_epoch && now_epoch < sunset_epoch ) phase = 0; // morning before dawn if ( now_epoch > sunrise_epoch && now_epoch >= sunset_epoch ) phase = 2; // evening after dusk // phase 0: we are before sunrise if ( phase == 0) { // go back to yesterday and calculate sunset midnight_epoch -= 86400; scratch_time = watch_utility_date_time_from_unix_time(midnight_epoch, 0); sun_rise_set(scratch_time.unit.year + WATCH_RTC_REFERENCE_YEAR, scratch_time.unit.month, scratch_time.unit.day, lon, lat, &sunrise, &sunset); sunset_epoch = midnight_epoch + sunset * 3600; // we are still in yesterday's night hours state->night = true; state->phase_start = sunset_epoch; state->phase_end = sunrise_epoch; } // phase 2: we are after sunset if ( phase == 2) { // skip to tomorrow and calculate sunrise midnight_epoch += 86400; scratch_time = watch_utility_date_time_from_unix_time(midnight_epoch, 0); sun_rise_set(scratch_time.unit.year + WATCH_RTC_REFERENCE_YEAR, scratch_time.unit.month, scratch_time.unit.day, lon, lat, &sunrise, &sunset); sunrise_epoch = midnight_epoch + sunrise * 3600; // we are still in yesterday's night hours state->night = true; state->phase_start = sunset_epoch; state->phase_end = sunrise_epoch; } // calculate the duration of a planetary second during this solar phase // and convert to Hertz so we can call a faster tick rate state->freq = (1 / ((double)( state->phase_end - state->phase_start ) / 43200)); } /** @details A planetary hour is one of exactly twelve hours of a solar phase. Its length varies. * This function calculates the current planetary hour and divides it up into relative minutes and seconds. * It also calculates the current planetary ruler of the hour and of the day. */ static void _planetary_time(movement_event_t event, movement_settings_t *settings, planetary_time_state_t *state) { char buf[14]; char ruler[3]; double night_hour_count = 0.0; uint8_t weekday, planet, planetary_hour; double hour_duration, current_hour, current_minute, current_second; watch_set_colon(); // get current time and convert to UTC state->scratch = watch_utility_date_time_convert_zone(watch_rtc_get_date_time(), movement_timezone_offsets[settings->bit.time_zone] * 60, 0); // when current phase ends calculate the next phase if ( watch_utility_date_time_to_unix_time(state->scratch, 0) >= state->phase_end ) { _planetary_solar_phase(settings, state); return; } if (settings->bit.clock_mode_24h) watch_set_indicator(WATCH_INDICATOR_24H); // PM for night hours, otherwise the night hours are counted from 13 if ( state->night ) { if (settings->bit.clock_mode_24h) night_hour_count = 12; else watch_set_indicator(WATCH_INDICATOR_PM); } // calculate the duration of a planetary hour during this solar phase hour_duration = (( state->phase_end - state->phase_start)) / 12.0; // which planetary hour are we in? // RTC only provides full second precision, so we have to manually add subseconds with each tick current_hour = ((( watch_utility_date_time_to_unix_time(state->scratch, 0) ) + event.subsecond * 0.11111111) - state->phase_start ) / hour_duration; planetary_hour = floor(current_hour) + ( state->night ? 12 : 0 ); current_hour += night_hour_count; //adjust for 24hr display current_minute = modf(current_hour, ¤t_hour) * 60.0; current_second = modf(current_minute, ¤t_minute) * 60.0; // the day changes after sunrise, so if we are at night it is yesterday's planetary day // hence we take the datetime object of when the last solar phase started as the current day // and then fill in the hours and minutes state->scratch = watch_utility_date_time_from_unix_time(state->phase_start, 0); state->scratch.unit.hour = floor(current_hour); state->scratch.unit.minute = floor(current_minute); state->scratch.unit.second = (uint8_t)floor(current_second) % 60; // what weekday is it (0 - 6) weekday = watch_utility_get_iso8601_weekday_number(state->scratch.unit.year, state->scratch.unit.month, state->scratch.unit.day) - 1; // planetary ruler of the hour or the day if ( state->day_ruler ) planet = plindex[weekday]; else planet = ( plindex[weekday] + planetary_hour ) % 7; // latin or greek ruler names or astrological symbol if ( state->ruler == 0 ) strncpy(ruler, planets[planet], 3); if ( state->ruler == 1 ) strncpy(ruler, planetes[planet], 3); if ( state->ruler == 2 ) strncpy(ruler, " ", 3); // display planetary time with ruler of the hour or ruler of the day if ( state->day_ruler ) sprintf(buf, "%s d%2d%02d%02d", ruler, state->scratch.unit.hour, state->scratch.unit.minute, state->scratch.unit.second); else sprintf(buf, "%s h%2d%02d%02d", ruler, state->scratch.unit.hour, state->scratch.unit.minute, state->scratch.unit.second); watch_display_string(buf, 0); if ( state->ruler == 2 ) _planetary_icon(planet); } // PUBLIC WATCH FACE FUNCTIONS //////////////////////////////////////////////// void planetary_time_face_setup(movement_settings_t *settings, uint8_t watch_face_index, void ** context_ptr) { (void) watch_face_index; (void) settings; if (*context_ptr == NULL) { *context_ptr = malloc(sizeof(planetary_time_state_t)); memset(*context_ptr, 0, sizeof(planetary_time_state_t)); } } void planetary_time_face_activate(movement_settings_t *settings, void *context) { (void) settings; if (watch_tick_animation_is_running()) watch_stop_tick_animation(); #if __EMSCRIPTEN__ int16_t browser_lat = EM_ASM_INT({ return lat; }); int16_t browser_lon = EM_ASM_INT({ return lon; }); if ((watch_get_backup_data(1) == 0) && (browser_lat || browser_lon)) { movement_location_t browser_loc; browser_loc.bit.latitude = browser_lat; browser_loc.bit.longitude = browser_lon; watch_store_backup_data(browser_loc.reg, 1); } #endif planetary_time_state_t *state = (planetary_time_state_t *)context; // calculate phase _planetary_solar_phase(settings, state); } bool planetary_time_face_loop(movement_event_t event, movement_settings_t *settings, void *context) { planetary_time_state_t *state = (planetary_time_state_t *)context; switch (event.event_type) { case EVENT_ACTIVATE: _planetary_time(event, settings, state); if ( state->freq > 1 ) // for hours with shorter seconds let's increase the tick to not skip seconds in the display movement_request_tick_frequency( 8 ); break; case EVENT_TICK: _planetary_time(event, settings, state); break; case EVENT_LIGHT_BUTTON_UP: state->ruler = (state->ruler + 1) % 3; break; case EVENT_ALARM_BUTTON_UP: // Just in case you have need for another button. state->day_ruler = !state->day_ruler; break; case EVENT_LOW_ENERGY_UPDATE: watch_start_tick_animation(500); break; default: return movement_default_loop_handler(event, settings); } return true; } void planetary_time_face_resign(movement_settings_t *settings, void *context) { (void) settings; (void) context; movement_request_tick_frequency( 1 ); }