hueso 2dfe165f22
Some checks failed
Build / build (push) Has been cancelled
Build / build-simulator (push) Has been cancelled
moar fixes
2025-05-16 18:58:52 -03:00

305 lines
11 KiB
C

// Compute times of moonrise and moonset at a specified latitude and longitude.
//
// This software minimizes computational work by performing the full calculation
// of the lunar position three times, at the beginning, middle, and end of the
// period of interest. Three point interpolation is used to predict the
// position for each hour, and the arithmetic mean is used to predict the
// half-hour positions.
//
// The full computational burden is negligible on modern computers, but the
// algorithm is effective and still useful for small embedded systems.
//
// This software was originally adapted to javascript by Stephen R. Schmitt
// from a BASIC program from the 'Astronomical Computing' column of Sky &
// Telescope, April 1989, page 78.
//
// Subsequently adapted from Stephen R. Schmitt's javascript to c++ for the
// Arduino by Cyrus Rahman.
//
// Subsequently adapted from Cyrus Rahman's Arduino C++ to C for the Sensor
// Watch by hueso, this work is subject to Stephen Schmitt's copyright:
//
// Copyright 2007 Stephen R. Schmitt
// Subsequent work Copyright 2020 Cyrus Rahman
// You may use or modify this source code in any way you find useful, provided
// that you agree that the author(s) have no warranty, obligations or liability.
// You must determine the suitability of this source code for your use.
//
// Redistributions of this source code must retain this copyright notice.
#include "moonrise.h"
#include <math.h>
#define K1 15 * (M_PI / 180) * 1.0027379
// Determine the nearest moon rise or set event previous, and the nearest
// moon rise or set event subsequent, to the specified time in seconds since the
// Unix epoch (January 1, 1970) and at the specified latitude and longitude in
// degrees.
//
// We look for events from MR_WINDOW/2 hours in the past to MR_WINDOW/2 hours
// in the future.
MoonRise MoonRise_calculate(double latitude, double longitude, uint32_t t) {
MoonRise self = {};
skyCoordinates moonPosition[3];
double offsetDays;
self.queryTime = t;
offsetDays = julianDate(t) - 2451545L; // Days since Jan 1, 2000, 1200UTC.
// Begin testing (MR_WINDOW / 2) hours before requested time.
// offsetDays -= (double)MR_WINDOW / (2 * 24) ;
// Calculate coordinates at start, middle, and end of search period.
for (int i = 0; i < 3; i++) {
moonPosition[i] = moon(offsetDays + i * (double)MR_WINDOW / (2 * 24));
}
// If the RA wraps around during this period, unwrap it to keep the
// sequence smooth for interpolation.
if (moonPosition[1].RA <= moonPosition[0].RA)
moonPosition[1].RA += 2 * M_PI;
if (moonPosition[2].RA <= moonPosition[1].RA)
moonPosition[2].RA += 2 * M_PI;
// Initialize interpolation array.
skyCoordinates mpWindow[3];
mpWindow[0].RA = moonPosition[0].RA;
mpWindow[0].declination = moonPosition[0].declination;
mpWindow[0].distance = moonPosition[0].distance;
for (int k = 0; k < MR_WINDOW; k++) { // Check each interval of search period
float ph = (float)(k + 1) / MR_WINDOW;
mpWindow[2].RA = interpolate(moonPosition[0].RA, moonPosition[1].RA,
moonPosition[2].RA, ph);
mpWindow[2].declination =
interpolate(moonPosition[0].declination, moonPosition[1].declination,
moonPosition[2].declination, ph);
mpWindow[2].distance = moonPosition[2].distance;
// Look for moonrise/set events during this interval.
{
double ha[3], VHz[3];
double lSideTime;
// Get (local_sidereal_time - MR_WINDOW / 2) hours in radians.
lSideTime = localSiderealTime(offsetDays, longitude) * 2 * M_PI / 360;
// Calculate Hour Angle.
ha[0] = lSideTime - mpWindow[0].RA + k * K1;
ha[2] = lSideTime - mpWindow[2].RA + k * K1 + K1;
// Hour Angle and declination at half hour.
ha[1] = (ha[2] + ha[0]) / 2;
mpWindow[1].declination =
(mpWindow[2].declination + mpWindow[0].declination) / 2;
double s = sin(M_PI / 180 * latitude);
double c = cos(M_PI / 180 * latitude);
// refraction + semidiameter at horizon + distance correction
double z = cos(M_PI / 180 * (90.567 - 41.685 / mpWindow[0].distance));
VHz[0] = s * sin(mpWindow[0].declination) +
c * cos(mpWindow[0].declination) * cos(ha[0]) - z;
VHz[2] = s * sin(mpWindow[2].declination) +
c * cos(mpWindow[2].declination) * cos(ha[2]) - z;
if (signbit(VHz[0]) == signbit(VHz[2]))
goto noevent; // No event this hour.
VHz[1] = s * sin(mpWindow[1].declination) +
c * cos(mpWindow[1].declination) * cos(ha[1]) - z;
double a, b, d, e, time;
a = 2 * VHz[2] - 4 * VHz[1] + 2 * VHz[0];
b = 4 * VHz[1] - 3 * VHz[0] - VHz[2];
d = b * b - 4 * a * VHz[0];
if (d < 0)
goto noevent; // No event this hour.
d = sqrt(d);
e = (-b + d) / (2 * a);
if ((e < 0) || (e > 1))
e = (-b - d) / (2 * a);
time = k + e + 1 / 120; // Time since k=0 of event (in hours).
// The time we started searching + the time from the start of the search
// to the event is the time of the event.
uint32_t eventTime;
eventTime = self.queryTime + (time) * 60 * 60;
double hz, nz, dz, az;
hz = ha[0] + e * (ha[2] - ha[0]); // Azimuth of the moon at the event.
nz = -cos(mpWindow[1].declination) * sin(hz);
dz = c * sin(mpWindow[1].declination) -
s * cos(mpWindow[1].declination) * cos(hz);
az = atan2(nz, dz) / (M_PI / 180);
if (az < 0)
az += 360;
// If there is no previously recorded event of this type, save this event.
//
// If this event is previous to queryTime, and is the nearest event to
// queryTime of events of its type previous to queryType, save this event,
// replacing the previously recorded event of its type. Events subsequent
// to queryTime are treated similarly, although since events are tested in
// chronological order no replacements will occur as successive events
// will be further from queryTime.
//
// If this event is subsequent to queryTime and there is an event of its
// type previous to queryTime, then there is an event of the other type
// between the two events of this event's type. If the event of the other
// type is previous to queryTime, then it is the nearest event to
// queryTime that is previous to queryTime. In this case save the current
// event, replacing the previously recorded event of its type. Otherwise
// discard the current event.
//
if ((VHz[0] < 0) && (VHz[2] > 0)) {
if (!self.hasRise ||
((self.riseTime < self.queryTime) == (eventTime < self.queryTime) &&
(self.riseTime - self.queryTime) > (eventTime - self.queryTime)) ||
((self.riseTime < self.queryTime) != (eventTime < self.queryTime) &&
(self.hasSet && (self.riseTime < self.queryTime) ==
(self.setTime < self.queryTime)))) {
self.riseTime = eventTime;
self.riseAz = az;
self.hasRise = true;
}
}
if ((VHz[0] > 0) && (VHz[2] < 0)) {
if (!self.hasSet ||
((self.setTime < self.queryTime) == (eventTime < self.queryTime) &&
(self.setTime - self.queryTime) > (eventTime - self.queryTime)) ||
((self.setTime < self.queryTime) != (eventTime < self.queryTime) &&
(self.hasRise && (self.setTime < self.queryTime) ==
(self.riseTime < self.queryTime)))) {
self.setTime = eventTime;
self.setAz = az;
self.hasSet = true;
}
}
noevent:
// There are obscure cases in the polar regions that require extra logic.
if (!self.hasRise && !self.hasSet)
self.isVisible = !signbit(VHz[2]);
else if (self.hasRise && !self.hasSet)
self.isVisible = (self.queryTime > self.riseTime);
else if (!self.hasRise && self.hasSet)
self.isVisible = (self.queryTime < self.setTime);
else
self.isVisible =
((self.riseTime < self.setTime && self.riseTime < self.queryTime &&
self.setTime > self.queryTime) ||
(self.riseTime > self.setTime && (self.riseTime < self.queryTime ||
self.setTime > self.queryTime)));
}
if (self.hasSet && self.hasRise)
break;
mpWindow[0] = mpWindow[2]; // Advance to next interval.
}
return self;
}
// Moon position using fundamental arguments
// (Van Flandern & Pulkkinen, 1979)
skyCoordinates moon(double dayOffset) {
double l = 0.606434 + 0.03660110129 * dayOffset;
double m = 0.374897 + 0.03629164709 * dayOffset;
double f = 0.259091 + 0.03674819520 * dayOffset;
double d = 0.827362 + 0.03386319198 * dayOffset;
double n = 0.347343 - 0.00014709391 * dayOffset;
double g = 0.993126 + 0.00273777850 * dayOffset;
l = 2 * M_PI * (l - floor(l));
m = 2 * M_PI * (m - floor(m));
f = 2 * M_PI * (f - floor(f));
d = 2 * M_PI * (d - floor(d));
n = 2 * M_PI * (n - floor(n));
g = 2 * M_PI * (g - floor(g));
double v, u, w;
v = 0.39558 * sin(f + n)
+ 0.08200 * sin(f)
+ 0.03257 * sin(m - f - n)
+ 0.01092 * sin(m + f + n)
+ 0.00666 * sin(m - f)
- 0.00644 * sin(m + f - 2*d + n)
- 0.00331 * sin(f - 2*d + n)
- 0.00304 * sin(f - 2*d)
- 0.00240 * sin(m - f - 2*d - n)
+ 0.00226 * sin(m + f)
- 0.00108 * sin(m + f - 2*d)
- 0.00079 * sin(f - n)
+ 0.00078 * sin(f + 2*d + n);
u = 1
- 0.10828 * cos(m)
- 0.01880 * cos(m - 2*d)
- 0.01479 * cos(2*d)
+ 0.00181 * cos(2*m - 2*d)
- 0.00147 * cos(2*m)
- 0.00105 * cos(2*d - g)
- 0.00075 * cos(m - 2*d + g);
w = 0.10478 * sin(m)
- 0.04105 * sin(2*f + 2*n)
- 0.02130 * sin(m - 2*d)
- 0.01779 * sin(2*f + n)
+ 0.01774 * sin(n)
+ 0.00987 * sin(2*d)
- 0.00338 * sin(m - 2*f - 2*n)
- 0.00309 * sin(g)
- 0.00190 * sin(2*f)
- 0.00144 * sin(m + n)
- 0.00144 * sin(m - 2*f - n)
- 0.00113 * sin(m + 2*f + 2*n)
- 0.00094 * sin(m - 2*d + g)
- 0.00092 * sin(2*m - 2*d);
double s;
skyCoordinates sc;
s = w / sqrt(u - v*v);
sc.RA = l + atan(s / sqrt(1 - s*s)); // Right ascension
s = v / sqrt(u);
sc.declination = atan(s / sqrt(1 - s*s)); // Declination
sc.distance = 60.40974 * sqrt(u); // Distance
return(sc);
}
// 3-point interpolation
double interpolate(double f0, double f1, double f2, double p) {
double a = f1 - f0;
double b = f2 - f1 - a;
return(f0 + p * (2*a + b * (2*p - 1)));
}
// Determine Julian date from Unix time.
// Provides marginally accurate results with Arduino 4-byte double.
double julianDate(uint32_t t) {
return (t / 86400.0L + 2440587.5);
}
// Local Sidereal Time
// Provides local sidereal time in degrees, requires longitude in degrees
// and time in fractional Julian days since Jan 1, 2000, 1200UTC (e.g. the
// Julian date - 2451545).
// cf. USNO Astronomical Almanac and
// https://astronomy.stackexchange.com/questions/24859/local-sidereal-time
double localSiderealTime(double offsetDays, double longitude) {
double lSideTime = (15.0L * (6.697374558L + 0.06570982441908L * offsetDays +
remainder(offsetDays, 1) * 24 + 12 +
0.000026 * (offsetDays / 36525) * (offsetDays / 36525))
+ longitude) / 360;
lSideTime -= floor(lSideTime);
lSideTime *= 360; // Convert to degrees.
return(lSideTime);
}