327 lines
14 KiB
C
327 lines
14 KiB
C
/*
|
|
|
|
SUNRISET.C - computes Sun rise/set times, start/end of twilight, and
|
|
the length of the day at any date and latitude
|
|
|
|
Written as DAYLEN.C, 1989-08-16
|
|
|
|
Modified to SUNRISET.C, 1992-12-01
|
|
|
|
(c) Paul Schlyter, 1989, 1992
|
|
|
|
Released to the public domain by Paul Schlyter, December 1992
|
|
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <math.h>
|
|
#include "sunriset.h"
|
|
|
|
static void sunpos( double d, double *lon, double *r );
|
|
|
|
/* A macro to compute the number of days elapsed since 2000 Jan 0.0 */
|
|
/* (which is equal to 1999 Dec 31, 0h UT) */
|
|
|
|
#define days_since_2000_Jan_0(y,m,d) \
|
|
(367L*(y)-((7*((y)+(((m)+9)/12)))/4)+((275*(m))/9)+(d)-730530L)
|
|
|
|
/* Some conversion factors between radians and degrees */
|
|
|
|
#ifndef PI
|
|
#define PI 3.1415926535897932384
|
|
#endif
|
|
|
|
#define RADEG ( 180.0 / PI )
|
|
#define DEGRAD ( PI / 180.0 )
|
|
|
|
/* The trigonometric functions in degrees */
|
|
|
|
#define sind(x) sin((x)*DEGRAD)
|
|
#define cosd(x) cos((x)*DEGRAD)
|
|
#define tand(x) tan((x)*DEGRAD)
|
|
|
|
#define atand(x) (RADEG*atan(x))
|
|
#define asind(x) (RADEG*asin(x))
|
|
#define acosd(x) (RADEG*acos(x))
|
|
#define atan2d(y,x) (RADEG*atan2(y,x))
|
|
|
|
/* The "workhorse" function for sun rise/set times */
|
|
|
|
int __sunriset__( int year, int month, int day, double lon, double lat,
|
|
double altit, int upper_limb, double *trise, double *tset )
|
|
/***************************************************************************/
|
|
/* Note: year,month,date = calendar date, 1801-2099 only. */
|
|
/* Eastern longitude positive, Western longitude negative */
|
|
/* Northern latitude positive, Southern latitude negative */
|
|
/* The longitude value IS critical in this function! */
|
|
/* altit = the altitude which the Sun should cross */
|
|
/* Set to -35/60 degrees for rise/set, -6 degrees */
|
|
/* for civil, -12 degrees for nautical and -18 */
|
|
/* degrees for astronomical twilight. */
|
|
/* upper_limb: non-zero -> upper limb, zero -> center */
|
|
/* Set to non-zero (e.g. 1) when computing rise/set */
|
|
/* times, and to zero when computing start/end of */
|
|
/* twilight. */
|
|
/* *rise = where to store the rise time */
|
|
/* *set = where to store the set time */
|
|
/* Both times are relative to the specified altitude, */
|
|
/* and thus this function can be used to compute */
|
|
/* various twilight times, as well as rise/set times */
|
|
/* Return value: 0 = sun rises/sets this day, times stored at */
|
|
/* *trise and *tset. */
|
|
/* +1 = sun above the specified "horizon" 24 hours. */
|
|
/* *trise set to time when the sun is at south, */
|
|
/* minus 12 hours while *tset is set to the south */
|
|
/* time plus 12 hours. "Day" length = 24 hours */
|
|
/* -1 = sun is below the specified "horizon" 24 hours */
|
|
/* "Day" length = 0 hours, *trise and *tset are */
|
|
/* both set to the time when the sun is at south. */
|
|
/* */
|
|
/**********************************************************************/
|
|
{
|
|
double d, /* Days since 2000 Jan 0.0 (negative before) */
|
|
sr, /* Solar distance, astronomical units */
|
|
sRA, /* Sun's Right Ascension */
|
|
sdec, /* Sun's declination */
|
|
sradius, /* Sun's apparent radius */
|
|
t, /* Diurnal arc */
|
|
tsouth, /* Time when Sun is at south */
|
|
sidtime; /* Local sidereal time */
|
|
|
|
int rc = 0; /* Return cde from function - usually 0 */
|
|
|
|
/* Compute d of 12h local mean solar time */
|
|
d = days_since_2000_Jan_0(year,month,day) + 0.5 - lon/360.0;
|
|
|
|
/* Compute the local sidereal time of this moment */
|
|
sidtime = revolution( GMST0(d) + 180.0 + lon );
|
|
|
|
/* Compute Sun's RA, Decl and distance at this moment */
|
|
sun_RA_dec( d, &sRA, &sdec, &sr );
|
|
|
|
/* Compute time when Sun is at south - in hours UT */
|
|
tsouth = 12.0 - rev180(sidtime - sRA)/15.0;
|
|
|
|
/* Compute the Sun's apparent radius in degrees */
|
|
sradius = 0.2666 / sr;
|
|
|
|
/* Do correction to upper limb, if necessary */
|
|
if ( upper_limb )
|
|
altit -= sradius;
|
|
|
|
/* Compute the diurnal arc that the Sun traverses to reach */
|
|
/* the specified altitude altit: */
|
|
{
|
|
double cost;
|
|
cost = ( sind(altit) - sind(lat) * sind(sdec) ) /
|
|
( cosd(lat) * cosd(sdec) );
|
|
if ( cost >= 1.0 )
|
|
rc = -1, t = 0.0; /* Sun always below altit */
|
|
else if ( cost <= -1.0 )
|
|
rc = +1, t = 12.0; /* Sun always above altit */
|
|
else
|
|
t = acosd(cost)/15.0; /* The diurnal arc, hours */
|
|
}
|
|
|
|
/* Store rise and set times - in hours UT */
|
|
*trise = tsouth - t;
|
|
*tset = tsouth + t;
|
|
|
|
return rc;
|
|
} /* __sunriset__ */
|
|
|
|
|
|
|
|
/* The "workhorse" function */
|
|
|
|
|
|
double __daylen__( int year, int month, int day, double lon, double lat,
|
|
double altit, int upper_limb )
|
|
/**********************************************************************/
|
|
/* Note: year,month,date = calendar date, 1801-2099 only. */
|
|
/* Eastern longitude positive, Western longitude negative */
|
|
/* Northern latitude positive, Southern latitude negative */
|
|
/* The longitude value is not critical. Set it to the correct */
|
|
/* longitude if you're picky, otherwise set to to, say, 0.0 */
|
|
/* The latitude however IS critical - be sure to get it correct */
|
|
/* altit = the altitude which the Sun should cross */
|
|
/* Set to -35/60 degrees for rise/set, -6 degrees */
|
|
/* for civil, -12 degrees for nautical and -18 */
|
|
/* degrees for astronomical twilight. */
|
|
/* upper_limb: non-zero -> upper limb, zero -> center */
|
|
/* Set to non-zero (e.g. 1) when computing day length */
|
|
/* and to zero when computing day+twilight length. */
|
|
/**********************************************************************/
|
|
{
|
|
double d, /* Days since 2000 Jan 0.0 (negative before) */
|
|
obl_ecl, /* Obliquity (inclination) of Earth's axis */
|
|
sr, /* Solar distance, astronomical units */
|
|
slon, /* True solar longitude */
|
|
sin_sdecl, /* Sine of Sun's declination */
|
|
cos_sdecl, /* Cosine of Sun's declination */
|
|
sradius, /* Sun's apparent radius */
|
|
t; /* Diurnal arc */
|
|
|
|
/* Compute d of 12h local mean solar time */
|
|
d = days_since_2000_Jan_0(year,month,day) + 0.5 - lon/360.0;
|
|
|
|
/* Compute obliquity of ecliptic (inclination of Earth's axis) */
|
|
obl_ecl = 23.4393 - 3.563E-7 * d;
|
|
|
|
/* Compute Sun's ecliptic longitude and distance */
|
|
sunpos( d, &slon, &sr );
|
|
|
|
/* Compute sine and cosine of Sun's declination */
|
|
sin_sdecl = sind(obl_ecl) * sind(slon);
|
|
cos_sdecl = sqrt( 1.0 - sin_sdecl * sin_sdecl );
|
|
|
|
/* Compute the Sun's apparent radius, degrees */
|
|
sradius = 0.2666 / sr;
|
|
|
|
/* Do correction to upper limb, if necessary */
|
|
if ( upper_limb )
|
|
altit -= sradius;
|
|
|
|
/* Compute the diurnal arc that the Sun traverses to reach */
|
|
/* the specified altitude altit: */
|
|
{
|
|
double cost;
|
|
cost = ( sind(altit) - sind(lat) * sin_sdecl ) /
|
|
( cosd(lat) * cos_sdecl );
|
|
if ( cost >= 1.0 )
|
|
t = 0.0; /* Sun always below altit */
|
|
else if ( cost <= -1.0 )
|
|
t = 24.0; /* Sun always above altit */
|
|
else t = (2.0/15.0) * acosd(cost); /* The diurnal arc, hours */
|
|
}
|
|
return t;
|
|
} /* __daylen__ */
|
|
|
|
|
|
/* This function computes the Sun's position at any instant */
|
|
|
|
static void sunpos( double d, double *lon, double *r )
|
|
/******************************************************/
|
|
/* Computes the Sun's ecliptic longitude and distance */
|
|
/* at an instant given in d, number of days since */
|
|
/* 2000 Jan 0.0. The Sun's ecliptic latitude is not */
|
|
/* computed, since it's always very near 0. */
|
|
/******************************************************/
|
|
{
|
|
double M, /* Mean anomaly of the Sun */
|
|
w, /* Mean longitude of perihelion */
|
|
/* Note: Sun's mean longitude = M + w */
|
|
e, /* Eccentricity of Earth's orbit */
|
|
E, /* Eccentric anomaly */
|
|
x, y, /* x, y coordinates in orbit */
|
|
v; /* True anomaly */
|
|
|
|
/* Compute mean elements */
|
|
M = revolution( 356.0470 + 0.9856002585 * d );
|
|
w = 282.9404 + 4.70935E-5 * d;
|
|
e = 0.016709 - 1.151E-9 * d;
|
|
|
|
/* Compute true longitude and radius vector */
|
|
E = M + e * RADEG * sind(M) * ( 1.0 + e * cosd(M) );
|
|
x = cosd(E) - e;
|
|
y = sqrt( 1.0 - e*e ) * sind(E);
|
|
*r = sqrt( x*x + y*y ); /* Solar distance */
|
|
v = atan2d( y, x ); /* True anomaly */
|
|
*lon = v + w; /* True solar longitude */
|
|
if ( *lon >= 360.0 )
|
|
*lon -= 360.0; /* Make it 0..360 degrees */
|
|
}
|
|
|
|
void sun_RA_dec( double d, double *RA, double *dec, double *r )
|
|
/******************************************************/
|
|
/* Computes the Sun's equatorial coordinates RA, Decl */
|
|
/* and also its distance, at an instant given in d, */
|
|
/* the number of days since 2000 Jan 0.0. */
|
|
/******************************************************/
|
|
{
|
|
double lon, obl_ecl, x, y, z;
|
|
|
|
/* Compute Sun's ecliptical coordinates */
|
|
sunpos( d, &lon, r );
|
|
|
|
/* Compute ecliptic rectangular coordinates (z=0) */
|
|
x = *r * cosd(lon);
|
|
y = *r * sind(lon);
|
|
|
|
/* Compute obliquity of ecliptic (inclination of Earth's axis) */
|
|
obl_ecl = 23.4393 - 3.563E-7 * d;
|
|
|
|
/* Convert to equatorial rectangular coordinates - x is unchanged */
|
|
z = y * sind(obl_ecl);
|
|
y = y * cosd(obl_ecl);
|
|
|
|
/* Convert to spherical coordinates */
|
|
*RA = atan2d( y, x );
|
|
*dec = atan2d( z, sqrt(x*x + y*y) );
|
|
|
|
} /* sun_RA_dec */
|
|
|
|
|
|
/******************************************************************/
|
|
/* This function reduces any angle to within the first revolution */
|
|
/* by subtracting or adding even multiples of 360.0 until the */
|
|
/* result is >= 0.0 and < 360.0 */
|
|
/******************************************************************/
|
|
|
|
#define INV360 ( 1.0 / 360.0 )
|
|
|
|
double revolution( double x )
|
|
/*****************************************/
|
|
/* Reduce angle to within 0..360 degrees */
|
|
/*****************************************/
|
|
{
|
|
return( x - 360.0 * floor( x * INV360 ) );
|
|
} /* revolution */
|
|
|
|
double rev180( double x )
|
|
/*********************************************/
|
|
/* Reduce angle to within +180..+180 degrees */
|
|
/*********************************************/
|
|
{
|
|
return( x - 360.0 * floor( x * INV360 + 0.5 ) );
|
|
} /* revolution */
|
|
|
|
|
|
/*******************************************************************/
|
|
/* This function computes GMST0, the Greenwich Mean Sidereal Time */
|
|
/* at 0h UT (i.e. the sidereal time at the Greenwhich meridian at */
|
|
/* 0h UT). GMST is then the sidereal time at Greenwich at any */
|
|
/* time of the day. I've generalized GMST0 as well, and define it */
|
|
/* as: GMST0 = GMST - UT -- this allows GMST0 to be computed at */
|
|
/* other times than 0h UT as well. While this sounds somewhat */
|
|
/* contradictory, it is very practical: instead of computing */
|
|
/* GMST like: */
|
|
/* */
|
|
/* GMST = (GMST0) + UT * (366.2422/365.2422) */
|
|
/* */
|
|
/* where (GMST0) is the GMST last time UT was 0 hours, one simply */
|
|
/* computes: */
|
|
/* */
|
|
/* GMST = GMST0 + UT */
|
|
/* */
|
|
/* where GMST0 is the GMST "at 0h UT" but at the current moment! */
|
|
/* Defined in this way, GMST0 will increase with about 4 min a */
|
|
/* day. It also happens that GMST0 (in degrees, 1 hr = 15 degr) */
|
|
/* is equal to the Sun's mean longitude plus/minus 180 degrees! */
|
|
/* (if we neglect aberration, which amounts to 20 seconds of arc */
|
|
/* or 1.33 seconds of time) */
|
|
/* */
|
|
/*******************************************************************/
|
|
|
|
double GMST0( double d )
|
|
{
|
|
double sidtim0;
|
|
/* Sidtime at 0h UT = L (Sun's mean longitude) + 180.0 degr */
|
|
/* L = M + w, as defined in sunpos(). Since I'm too lazy to */
|
|
/* add these numbers, I'll let the C compiler do it for me. */
|
|
/* Any decent C compiler will add the constants at compile */
|
|
/* time, imposing no runtime or code overhead. */
|
|
sidtim0 = revolution( ( 180.0 + 356.0470 + 282.9404 ) +
|
|
( 0.9856002585 + 4.70935E-5 ) * d );
|
|
return sidtim0;
|
|
} /* GMST0 */ |