191 lines
6.3 KiB
C
191 lines
6.3 KiB
C
/*
|
|
* MIT License
|
|
*
|
|
* Copyright (c) 2021 Joey Castillo
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include "watch_utility.h"
|
|
|
|
const char * watch_utility_get_weekday(watch_date_time date_time) {
|
|
static const char weekdays[7][3] = {"SA", "SU", "MO", "TU", "WE", "TH", "FR"};
|
|
date_time.unit.year += 20;
|
|
if (date_time.unit.month <= 2) {
|
|
date_time.unit.month += 12;
|
|
date_time.unit.year--;
|
|
}
|
|
return weekdays[(date_time.unit.day + 13 * (date_time.unit.month + 1) / 5 + date_time.unit.year + date_time.unit.year / 4 + 525) % 7];
|
|
}
|
|
|
|
uint32_t watch_utility_convert_to_unix_time(uint16_t year, uint8_t month, uint8_t day, uint8_t hour, uint8_t minute, uint8_t second, uint32_t utc_offset) {
|
|
uint16_t DAYS_SO_FAR[] = {
|
|
0, // Jan
|
|
31, // Feb
|
|
59, // March
|
|
90, // April
|
|
120, // May
|
|
151, // June
|
|
181, // July
|
|
212, // August
|
|
243, // September
|
|
273, // October
|
|
304, // November
|
|
334 // December
|
|
};
|
|
|
|
uint32_t year_adj = year + 4800;
|
|
uint32_t febs = year_adj - (month <= 2 ? 1 : 0); /* Februaries since base. */
|
|
uint32_t leap_days = 1 + (febs / 4) - (febs / 100) + (febs / 400);
|
|
uint32_t days = 365 * year_adj + leap_days + DAYS_SO_FAR[month - 1] + day - 1;
|
|
days -= 2472692; /* Adjust to Unix epoch. */
|
|
|
|
uint32_t timestamp = days * 86400;
|
|
timestamp += hour * 3600;
|
|
timestamp += minute * 60;
|
|
timestamp += second;
|
|
timestamp -= utc_offset;
|
|
|
|
return timestamp;
|
|
}
|
|
|
|
uint32_t watch_utility_date_time_to_unix_time(watch_date_time date_time, uint32_t utc_offset) {
|
|
return watch_utility_convert_to_unix_time(date_time.unit.year + WATCH_RTC_REFERENCE_YEAR, date_time.unit.month, date_time.unit.day, date_time.unit.hour, date_time.unit.minute, date_time.unit.second, utc_offset);
|
|
}
|
|
|
|
#define LEAPOCH (946684800LL + 86400*(31+29))
|
|
|
|
#define DAYS_PER_400Y (365*400 + 97)
|
|
#define DAYS_PER_100Y (365*100 + 24)
|
|
#define DAYS_PER_4Y (365*4 + 1)
|
|
|
|
watch_date_time watch_utility_date_time_from_unix_time(uint32_t timestamp, uint32_t utc_offset) {
|
|
watch_date_time retval;
|
|
retval.reg = 0;
|
|
int32_t days, secs;
|
|
int32_t remdays, remsecs, remyears;
|
|
int32_t qc_cycles, c_cycles, q_cycles;
|
|
int32_t years, months;
|
|
int32_t wday, yday, leap;
|
|
static const int8_t days_in_month[] = {31,30,31,30,31,31,30,31,30,31,31,29};
|
|
timestamp += utc_offset;
|
|
|
|
secs = timestamp - LEAPOCH;
|
|
days = secs / 86400;
|
|
remsecs = secs % 86400;
|
|
if (remsecs < 0) {
|
|
remsecs += 86400;
|
|
days--;
|
|
}
|
|
|
|
wday = (3+days)%7;
|
|
if (wday < 0) wday += 7;
|
|
|
|
qc_cycles = (int)(days / DAYS_PER_400Y);
|
|
remdays = days % DAYS_PER_400Y;
|
|
if (remdays < 0) {
|
|
remdays += DAYS_PER_400Y;
|
|
qc_cycles--;
|
|
}
|
|
|
|
c_cycles = remdays / DAYS_PER_100Y;
|
|
if (c_cycles == 4) c_cycles--;
|
|
remdays -= c_cycles * DAYS_PER_100Y;
|
|
|
|
q_cycles = remdays / DAYS_PER_4Y;
|
|
if (q_cycles == 25) q_cycles--;
|
|
remdays -= q_cycles * DAYS_PER_4Y;
|
|
|
|
remyears = remdays / 365;
|
|
if (remyears == 4) remyears--;
|
|
remdays -= remyears * 365;
|
|
|
|
leap = !remyears && (q_cycles || !c_cycles);
|
|
yday = remdays + 31 + 28 + leap;
|
|
if (yday >= 365+leap) yday -= 365+leap;
|
|
|
|
years = remyears + 4*q_cycles + 100*c_cycles + 400*qc_cycles;
|
|
|
|
for (months=0; days_in_month[months] <= remdays; months++)
|
|
remdays -= days_in_month[months];
|
|
|
|
years += 2000;
|
|
|
|
months += 2;
|
|
if (months >= 12) {
|
|
months -=12;
|
|
years++;
|
|
}
|
|
|
|
if (years < 2020 || years > 2083) return retval;
|
|
retval.unit.year = years - WATCH_RTC_REFERENCE_YEAR;
|
|
retval.unit.month = months + 1;
|
|
retval.unit.day = remdays + 1;
|
|
|
|
retval.unit.hour = remsecs / 3600;
|
|
retval.unit.minute = remsecs / 60 % 60;
|
|
retval.unit.second = remsecs % 60;
|
|
|
|
return retval;
|
|
}
|
|
|
|
watch_date_time watch_utility_date_time_convert_zone(watch_date_time date_time, uint32_t origin_utc_offset, uint32_t destination_utc_offset) {
|
|
uint32_t timestamp = watch_utility_date_time_to_unix_time(date_time, origin_utc_offset);
|
|
return watch_utility_date_time_from_unix_time(timestamp, destination_utc_offset);
|
|
}
|
|
|
|
watch_duration_t watch_utility_seconds_to_duration(uint32_t seconds) {
|
|
watch_duration_t retval;
|
|
|
|
retval.seconds = (seconds % 60);
|
|
retval.minutes = (seconds % 3600) / 60;
|
|
retval.hours = (seconds % 86400) / 3600;
|
|
retval.days = seconds / 86400;
|
|
|
|
return retval;
|
|
}
|
|
|
|
bool watch_utility_convert_to_12_hour(watch_date_time *date_time) {
|
|
bool is_pm = date_time->unit.hour > 11;
|
|
date_time->unit.hour %= 12;
|
|
if (date_time->unit.hour == 0) date_time->unit.hour = 12;
|
|
return is_pm;
|
|
}
|
|
|
|
float watch_utility_thermistor_temperature(uint16_t value, bool highside, float b_coefficient, float nominal_temperature, float nominal_resistance, float series_resistance) {
|
|
float reading = (float)value;
|
|
|
|
if (highside) {
|
|
reading = (1023.0 * series_resistance) / (reading / 64.0);
|
|
reading -= series_resistance;
|
|
} else {
|
|
reading = series_resistance / (65535.0 / value - 1.0);
|
|
}
|
|
|
|
reading = reading / nominal_resistance;
|
|
reading = log(reading);
|
|
reading /= b_coefficient;
|
|
reading += 1.0 / (nominal_temperature + 273.15);
|
|
reading = 1.0 / reading;
|
|
reading -= 273.15;
|
|
|
|
return reading;
|
|
}
|