2021-05-02 15:45:40 -04:00

375 lines
9.9 KiB
C

/**
* \file
*
* \brief SAM TC
*
* Copyright (c) 2014-2018 Microchip Technology Inc. and its subsidiaries.
*
* \asf_license_start
*
* \page License
*
* Subject to your compliance with these terms, you may use Microchip
* software and any derivatives exclusively with Microchip products.
* It is your responsibility to comply with third party license terms applicable
* to your use of third party software (including open source software) that
* may accompany Microchip software.
*
* THIS SOFTWARE IS SUPPLIED BY MICROCHIP "AS IS". NO WARRANTIES,
* WHETHER EXPRESS, IMPLIED OR STATUTORY, APPLY TO THIS SOFTWARE,
* INCLUDING ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
* AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL MICROCHIP BE
* LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL
* LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
* SOFTWARE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
* POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT
* ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY
* RELATED TO THIS SOFTWARE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY,
* THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THIS SOFTWARE.
*
* \asf_license_stop
*
*/
#include <hpl_pwm.h>
#include <hpl_tc_config.h>
#include <hpl_timer.h>
#include <utils.h>
#include <utils_assert.h>
#include <hpl_tc_base.h>
#ifndef CONF_TC0_ENABLE
#define CONF_TC0_ENABLE 0
#endif
#ifndef CONF_TC1_ENABLE
#define CONF_TC1_ENABLE 0
#endif
#ifndef CONF_TC2_ENABLE
#define CONF_TC2_ENABLE 0
#endif
#ifndef CONF_TC3_ENABLE
#define CONF_TC3_ENABLE 0
#endif
#ifndef CONF_TC4_ENABLE
#define CONF_TC4_ENABLE 0
#endif
#ifndef CONF_TC5_ENABLE
#define CONF_TC5_ENABLE 0
#endif
#ifndef CONF_TC6_ENABLE
#define CONF_TC6_ENABLE 0
#endif
#ifndef CONF_TC7_ENABLE
#define CONF_TC7_ENABLE 0
#endif
/**
* \brief Macro is used to fill usart configuration structure based on its
* number
*
* \param[in] n The number of structures
*/
#define TC_CONFIGURATION(n) \
{ \
n, TC##n##_IRQn, \
TC_CTRLA_MODE(CONF_TC##n##_MODE) | TC_CTRLA_PRESCSYNC(CONF_TC##n##_PRESCSYNC) \
| (CONF_TC##n##_RUNSTDBY << TC_CTRLA_RUNSTDBY_Pos) | (CONF_TC##n##_ONDEMAND << TC_CTRLA_ONDEMAND_Pos) \
| TC_CTRLA_PRESCALER(CONF_TC##n##_PRESCALER) | (CONF_TC##n##_ALOCK << TC_CTRLA_ALOCK_Pos), \
(CONF_TC##n##_OVFEO << TC_EVCTRL_OVFEO_Pos) | (CONF_TC##n##_TCEI << TC_EVCTRL_TCEI_Pos) \
| (CONF_TC##n##_TCINV << TC_EVCTRL_TCINV_Pos) | (CONF_TC##n##_EVACT << TC_EVCTRL_EVACT_Pos) \
| (CONF_TC##n##_MCEO0 << TC_EVCTRL_MCEO0_Pos) | (CONF_TC##n##_MCEO1 << TC_EVCTRL_MCEO1_Pos), \
(CONF_TC##n##_DBGRUN << TC_DBGCTRL_DBGRUN_Pos), CONF_TC##n##_PER, CONF_TC##n##_CC0, CONF_TC##n##_CC1, \
}
/**
* \brief TC configuration type
*/
struct tc_configuration {
uint8_t number;
IRQn_Type irq;
hri_tc_ctrla_reg_t ctrl_a;
hri_tc_evctrl_reg_t event_ctrl;
hri_tc_dbgctrl_reg_t dbg_ctrl;
hri_tccount8_per_reg_t per;
hri_tccount32_cc_reg_t cc0;
hri_tccount32_cc_reg_t cc1;
};
/**
* \brief Array of TC configurations
*/
static struct tc_configuration _tcs[] = {
#if CONF_TC0_ENABLE == 1
TC_CONFIGURATION(0),
#endif
#if CONF_TC1_ENABLE == 1
TC_CONFIGURATION(1),
#endif
#if CONF_TC2_ENABLE == 1
TC_CONFIGURATION(2),
#endif
#if CONF_TC3_ENABLE == 1
TC_CONFIGURATION(3),
#endif
#if CONF_TC4_ENABLE == 1
TC_CONFIGURATION(4),
#endif
#if CONF_TC5_ENABLE == 1
TC_CONFIGURATION(5),
#endif
#if CONF_TC6_ENABLE == 1
TC_CONFIGURATION(6),
#endif
#if CONF_TC7_ENABLE == 1
TC_CONFIGURATION(7),
#endif
};
/**
* \brief Set of pointer to hal_pwm helper functions
*/
static struct _pwm_hpl_interface _tc_pwm_functions = {
_tc_pwm_init,
_tc_pwm_deinit,
_tc_start_pwm,
_tc_stop_pwm,
_tc_set_pwm_param,
_tc_is_pwm_enabled,
_tc_pwm_get_period,
_tc_pwm_get_duty,
_tc_pwm_set_irq_state,
};
static struct _pwm_device *_tc3_dev = NULL;
static int8_t get_tc_index(const void *const hw);
static void _tc_init_irq_param(const void *const hw, void *dev);
static inline uint8_t _get_hardware_offset(const void *const hw);
/**
* \brief Initialize TC for PWM mode
*/
int32_t _tc_pwm_init(struct _pwm_device *const device, void *const hw)
{
int8_t i = get_tc_index(hw);
device->hw = hw;
if (!hri_tc_is_syncing(hw, TC_SYNCBUSY_SWRST)) {
if (hri_tc_get_CTRLA_reg(hw, TC_CTRLA_ENABLE)) {
hri_tc_clear_CTRLA_ENABLE_bit(hw);
hri_tc_wait_for_sync(hw, TC_SYNCBUSY_ENABLE);
}
hri_tc_write_CTRLA_reg(hw, TC_CTRLA_SWRST);
}
hri_tc_wait_for_sync(hw, TC_SYNCBUSY_SWRST);
hri_tc_write_CTRLA_reg(hw, _tcs[i].ctrl_a);
hri_tc_write_DBGCTRL_reg(hw, _tcs[i].dbg_ctrl);
hri_tc_write_EVCTRL_reg(hw, _tcs[i].event_ctrl);
hri_tc_write_WAVE_reg(hw, TC_WAVE_WAVEGEN_MPWM_Val);
if ((_tcs[i].ctrl_a & TC_CTRLA_MODE_Msk) == TC_CTRLA_MODE_COUNT32) {
hri_tccount32_write_CC_reg(hw, 0, _tcs[i].cc0);
hri_tccount32_write_CC_reg(hw, 1, _tcs[i].cc1);
} else if ((_tcs[i].ctrl_a & TC_CTRLA_MODE_Msk) == TC_CTRLA_MODE_COUNT16) {
hri_tccount16_write_CC_reg(hw, 0, (uint16_t)_tcs[i].cc0);
hri_tccount16_write_CC_reg(hw, 1, (uint16_t)_tcs[i].cc1);
} else {
/* 8-bit resolution is not accepted by duty cycle control */
return -1;
}
_tc_init_irq_param(hw, (void *)device);
NVIC_DisableIRQ(_tcs[i].irq);
NVIC_ClearPendingIRQ(_tcs[i].irq);
NVIC_EnableIRQ(_tcs[i].irq);
return 0;
}
/**
* \brief De-initialize TC for PWM mode
*/
void _tc_pwm_deinit(struct _pwm_device *const device)
{
void *const hw = device->hw;
int8_t i = get_tc_index(hw);
ASSERT(ARRAY_SIZE(_tcs));
NVIC_DisableIRQ(_tcs[i].irq);
hri_tc_clear_CTRLA_ENABLE_bit(hw);
hri_tc_set_CTRLA_SWRST_bit(hw);
}
/**
* \brief Start PWM
*/
void _tc_start_pwm(struct _pwm_device *const device)
{
hri_tc_set_CTRLA_ENABLE_bit(device->hw);
}
/**
* \brief Stop PWM
*/
void _tc_stop_pwm(struct _pwm_device *const device)
{
hri_tc_clear_CTRLA_ENABLE_bit(device->hw);
}
/**
* \brief Set PWM parameter
*/
void _tc_set_pwm_param(struct _pwm_device *const device, const pwm_period_t period, const pwm_period_t duty_cycle)
{
void *const hw = device->hw;
int8_t i = get_tc_index(hw);
_tcs[i].cc0 = period;
_tcs[i].cc1 = duty_cycle;
if ((_tcs[i].ctrl_a & TC_CTRLA_MODE_Msk) == TC_CTRLA_MODE_COUNT32) {
hri_tccount32_write_CC_reg(hw, 0, _tcs[i].cc0);
hri_tccount32_write_CC_reg(hw, 1, _tcs[i].cc1);
} else {
hri_tccount16_write_CC_reg(hw, 0, _tcs[i].cc0);
hri_tccount16_write_CC_reg(hw, 1, _tcs[i].cc1);
}
}
/**
* \brief Get pwm waveform period value
*/
pwm_period_t _tc_pwm_get_period(const struct _pwm_device *const device)
{
void *const hw = device->hw;
int8_t i = get_tc_index(hw);
if ((_tcs[i].ctrl_a & TC_CTRLA_MODE_Msk) == TC_CTRLA_MODE_COUNT32) {
return (pwm_period_t)(hri_tccount32_read_CC_reg(hw, 0));
} else {
return (pwm_period_t)(hri_tccount16_read_CC_reg(hw, 0));
}
}
/**
* \brief Get pwm waveform duty cycle
*/
uint32_t _tc_pwm_get_duty(const struct _pwm_device *const device)
{
void *const hw = device->hw;
int8_t i = get_tc_index(hw);
uint32_t per;
uint32_t duty_cycle;
if ((_tcs[i].ctrl_a & TC_CTRLA_MODE_Msk) == TC_CTRLA_MODE_COUNT32) {
per = hri_tccount32_read_CC_reg(hw, 0);
duty_cycle = hri_tccount32_read_CC_reg(hw, 1);
} else {
per = hri_tccount16_read_CC_reg(hw, 0);
duty_cycle = hri_tccount16_read_CC_reg(hw, 1);
}
return ((duty_cycle * 1000) / per);
}
/**
* \brief Check if PWM is running
*/
bool _tc_is_pwm_enabled(const struct _pwm_device *const device)
{
return hri_tc_get_CTRLA_ENABLE_bit(device->hw);
}
/**
* \brief Enable/disable PWM interrupt
*/
void _tc_pwm_set_irq_state(struct _pwm_device *const device, const enum _pwm_callback_type type, const bool disable)
{
ASSERT(device);
if (PWM_DEVICE_PERIOD_CB == type) {
hri_tc_write_INTEN_OVF_bit(device->hw, disable);
} else if (PWM_DEVICE_ERROR_CB == type) {
hri_tc_write_INTEN_ERR_bit(device->hw, disable);
}
}
/**
* \brief Retrieve timer helper functions
*/
struct _timer_hpl_interface *_tc_get_timer(void)
{
return NULL;
}
/**
* \brief Retrieve pwm helper functions
*/
struct _pwm_hpl_interface *_tc_get_pwm(void)
{
return &_tc_pwm_functions;
}
/**
* \internal TC interrupt handler for PWM
*
* \param[in] instance TC instance number
*/
static void tc_pwm_interrupt_handler(struct _pwm_device *device)
{
void *const hw = device->hw;
if (hri_tc_get_interrupt_OVF_bit(hw)) {
hri_tc_clear_interrupt_OVF_bit(hw);
if (NULL != device->callback.pwm_period_cb) {
device->callback.pwm_period_cb(device);
}
}
if (hri_tc_get_INTEN_ERR_bit(hw)) {
hri_tc_clear_interrupt_ERR_bit(hw);
if (NULL != device->callback.pwm_error_cb) {
device->callback.pwm_error_cb(device);
}
}
}
/**
* \brief TC interrupt handler
*/
void TC3_Handler(void)
{
tc_pwm_interrupt_handler(_tc3_dev);
}
/**
* \internal Retrieve TC index
*
* \param[in] hw The pointer to hardware instance
*
* \return The index of TC configuration
*/
static int8_t get_tc_index(const void *const hw)
{
uint8_t index = _get_hardware_offset(hw);
uint8_t i;
for (i = 0; i < ARRAY_SIZE(_tcs); i++) {
if (_tcs[i].number == index) {
return i;
}
}
ASSERT(false);
return -1;
}
/**
* \brief Init irq param with the given tc hardware instance
*/
static void _tc_init_irq_param(const void *const hw, void *dev)
{
if (hw == TC3) {
_tc3_dev = (struct _pwm_device *)dev;
}
}
/**
* \internal Retrieve TC hardware index
*
* \param[in] hw The pointer to hardware instance
*/
static inline uint8_t _get_hardware_offset(const void *const hw)
{
return (((uint32_t)hw - (uint32_t)TC0) >> 10);
}