Jonathan Glines f633b7634b Support leading zero representation for 24h clock
Toggle between default behavior and leading zero with long-press of alarm
button on page with 24h setting.
2023-10-29 11:15:50 -04:00

731 lines
26 KiB
C

/*
* MIT License
*
* Copyright (c) 2023 Gabor L Ugray
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
/* ** TODO
* ===================
* -- Additional power-saving optimizations
*/
#include <stdlib.h>
#include <string.h>
#include "activity_face.h"
#include "chirpy_tx.h"
#include "watch.h"
#include "watch_utility.h"
// ===========================================================================
// This part is configurable: you can edit values here to customize you activity face
// In particular, with num_enabled_activities and enabled_activities you can choose a subset of the
// activities that you want to see in your watch.
// You can also add new items to activity_names, but don't redefine or remove existing ones.
// If a logged activity is shorter than this, then it won't be added to log when it ends.
// This way scarce log slots are not taken up by aborted events that weren't real activities.
static const uint16_t activity_min_length_sec = 60;
// Supported activities. ID of activity is index in this buffer
// W e should never change order or redefine items, only add new items when needed.
static const char activity_names[][7] = {
" bIKE ",
"uuaLK ",
" rUn ",
"DAnCE ",
" yOgA ",
"CrOSS ",
"Suuinn",
"ELLIP ",
" gYnn",
" rOuu",
"SOCCEr",
" FOOTb",
" bALL ",
" SKI ",
};
// Currently enabled activities. This makes picking on first subface easier: why show activities you personally never do.
static const uint8_t enabled_activities[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13};
// Number of currently enabled activities (size of enabled_activities).
static const uint8_t num_enabled_activities = sizeof(enabled_activities) / sizeof(uint8_t);
// End configurable section
// ===========================================================================
// One logged activity
typedef struct __attribute__((__packed__)) {
// Activity's start time
watch_date_time start_time;
// Total duration of activity, including time spend in paus
uint16_t total_sec;
// Number of seconds the activity was paused
uint16_t pause_sec;
// Type of activity (index in activity_names)
uint8_t activity_type;
} activity_item_t;
#define MAX_ACTIVITY_SECONDS 28800 // 8 hours = 28800 sec
// Size of (fixed) buffer to log activites. Takes up x9 bytes in SRAM if face is installed.
#define ACTIVITY_LOG_SZ 99
// Number of activities in buffer.
static uint8_t activity_log_count = 0;
// Buffer with all logged activities.
static activity_item_t activity_log_buffer[ACTIVITY_LOG_SZ];
#define CHIRPY_PREFIX_LEN 2
// First two bytes chirped out, to identify transmission as from the activity face
static const uint8_t activity_chirpy_prefix[CHIRPY_PREFIX_LEN] = {0x27, 0x00};
// The face's different UI modes (views).
typedef enum {
ACTM_CHOOSE = 0,
ACTM_LOGGING,
ACTM_PAUSED,
ACTM_DONE,
ACTM_LOGSIZE,
ACTM_CHIRP,
ACTM_CHIRPING,
ACTM_CLEAR,
ACTM_CLEAR_CONFIRM,
ACTM_CLEAR_DONE,
} activity_mode_t;
// The full state of the activity face
typedef struct {
// Current mode (which secondary face, or ongoing operation like logging)
activity_mode_t mode;
// Index of currently selected activity in enabled_activities
uint8_t type_ix;
// Used for different things depending on mode
// In ACTM_DONE: countdown for animation, before returning to start face
// In ACTM_LOGGING and ACTM_PAUSED: drives blinking colon and alternating time display
// In ACTM_LOGSIZE, ACTM_CLEAR: enables timeout return to choose screen
uint16_t counter;
// Start of currently logged activity, if any
watch_date_time start_time;
// Total seconds elapsed since logging started
uint16_t curr_total_sec;
// Total paused seconds in current log
uint16_t curr_pause_sec;
// Helps us handle 1/64 ticks during transmission; including countdown timer
chirpy_tick_state_t chirpy_tick_state;
// Used by chirpy encoder during transmission
chirpy_encoder_state_t chirpy_encoder_state;
// 0: Running normally
// 1: In LE mode
// 2: Just woke up from LE mode. Will go to 0 after ignoring ALARM_BUTTON_UP.
uint8_t le_state;
} activity_state_t;
#define ACTIVITY_BUF_SZ 14
// Temp buffer used for sprintf'ing content for the display.
char activity_buf[ACTIVITY_BUF_SZ];
// Needed by _activity_get_next_byte to keep track of where we are in transmission
uint16_t *activity_seq_pos;
static void _activity_clear_buffers() {
// Clear activity buffer; 0xcd is good for diagnostics
memset(activity_log_buffer, 0xcd, ACTIVITY_LOG_SZ * sizeof(activity_item_t));
// Clear display buffer
memset(activity_buf, 0, ACTIVITY_BUF_SZ);
}
static void _activity_display_choice(activity_state_t *state);
static void _activity_update_logging_screen(movement_settings_t *settings, activity_state_t *state);
static uint8_t _activity_get_next_byte(uint8_t *next_byte);
void activity_face_setup(movement_settings_t *settings, uint8_t watch_face_index, void **context_ptr) {
(void)settings;
(void)watch_face_index;
if (*context_ptr == NULL) {
*context_ptr = malloc(sizeof(activity_state_t));
memset(*context_ptr, 0, sizeof(activity_state_t));
// This happens only at boot
_activity_clear_buffers();
}
// Do any pin or peripheral setup here; this will be called whenever the watch wakes from deep sleep.
}
void activity_face_activate(movement_settings_t *settings, void *context) {
(void)settings;
(void)context;
// Not using this function. Calling _activity_activate from the event handler.
// That is what we get both when the face is shown upon navigation by MODE,
// and when waking from low energy state.
}
// Called from the ACTIVATE event handler in the loop
static void _activity_activate(movement_settings_t *settings, activity_state_t *state) {
// If waking from low-energy state and currently logging: update seconds values
// Those are not up-to-date because ticks have not been coming
if (state->le_state != 0 && state->mode == ACTM_LOGGING) {
state->le_state = 2;
watch_date_time now = watch_rtc_get_date_time();
uint32_t now_timestamp = watch_utility_date_time_to_unix_time(now, 0);
uint32_t start_timestamp = watch_utility_date_time_to_unix_time(state->start_time, 0);
uint32_t total_seconds = now_timestamp - start_timestamp;
state->curr_total_sec = total_seconds;
_activity_update_logging_screen(settings, state);
}
// Regular activation: start from defaults
else {
state->le_state = 0;
state->mode = 0;
state->type_ix = 0;
_activity_display_choice(state);
}
}
static void _activity_display_choice(activity_state_t *state) {
watch_display_string("AC", 0);
// If buffer is full: We say "FULL"
if (activity_log_count >= ACTIVITY_LOG_SZ) {
watch_display_string(" FULL ", 4);
}
// Otherwise, we show currently activity
else {
uint8_t activity_ix = enabled_activities[state->type_ix];
const char *name = activity_names[activity_ix];
watch_display_string((char *)name, 4);
}
}
const uint8_t activity_anim_pixels[][2] = {
{1, 4}, // TL
{0, 5}, // BL
{0, 6}, // BOT
{1, 6}, // BR
{2, 5}, // TR
{2, 4}, // TOP
// {2, 4}, // MID
};
static void _activity_update_logging_screen(movement_settings_t *settings, activity_state_t *state) {
watch_duration_t duration;
watch_display_string("AC ", 0);
// If we're in LE state: per-minute update is special
if (state->le_state == 1) {
watch_date_time now = watch_rtc_get_date_time();
uint32_t now_timestamp = watch_utility_date_time_to_unix_time(now, 0);
uint32_t start_timestamp = watch_utility_date_time_to_unix_time(state->start_time, 0);
uint32_t total_seconds = now_timestamp - start_timestamp;
duration = watch_utility_seconds_to_duration(total_seconds);
sprintf(activity_buf, " %d%02d ", duration.hours, duration.minutes);
watch_display_string(activity_buf, 4);
watch_set_colon();
watch_set_indicator(WATCH_INDICATOR_LAP);
watch_clear_indicator(WATCH_INDICATOR_PM);
watch_clear_indicator(WATCH_INDICATOR_24H);
return;
}
// Show elapsed time, or PAUSE
if ((state->counter % 5) < 3) {
watch_set_indicator(WATCH_INDICATOR_LAP);
watch_clear_indicator(WATCH_INDICATOR_PM);
watch_clear_indicator(WATCH_INDICATOR_24H);
if (state->mode == ACTM_PAUSED) {
watch_display_string(" PAUSE", 4);
watch_clear_colon();
} else {
duration = watch_utility_seconds_to_duration(state->curr_total_sec);
// Under 10 minutes: M:SS
if (state->curr_total_sec < 600) {
sprintf(activity_buf, " %01d%02d", duration.minutes, duration.seconds);
watch_display_string(activity_buf, 4);
watch_clear_colon();
}
// Under an hour: MM:SS
else if (state->curr_total_sec < 3600) {
sprintf(activity_buf, " %02d%02d", duration.minutes, duration.seconds);
watch_display_string(activity_buf, 4);
watch_clear_colon();
}
// Over an hour: H:MM:SS
// (We never go to two-digit hours; stop at 8)
else {
sprintf(activity_buf, " %d%02d%02d", duration.hours, duration.minutes, duration.seconds);
watch_display_string(activity_buf, 4);
watch_set_colon();
}
}
}
// Briefly, show time without seconds
else {
bool set_leading_zero = false;
watch_clear_indicator(WATCH_INDICATOR_LAP);
watch_date_time now = watch_rtc_get_date_time();
uint8_t hour = now.unit.hour;
if (!settings->bit.clock_mode_24h) {
watch_clear_indicator(WATCH_INDICATOR_24H);
if (hour < 12)
watch_clear_indicator(WATCH_INDICATOR_PM);
else
watch_set_indicator(WATCH_INDICATOR_PM);
hour %= 12;
if (hour == 0) hour = 12;
} else {
watch_clear_indicator(WATCH_INDICATOR_PM);
if (!settings->bit.clock_24h_leading_zero)
watch_set_indicator(WATCH_INDICATOR_24H);
else if (hour < 10)
set_leading_zero = true;
}
sprintf(activity_buf, "%2d%02d ", hour, now.unit.minute);
watch_set_colon();
watch_display_string(activity_buf, 4);
if (set_leading_zero)
watch_display_string("0", 4);
}
}
static void _activity_quit_chirping() {
watch_clear_indicator(WATCH_INDICATOR_BELL);
watch_set_buzzer_off();
movement_request_tick_frequency(1);
}
static void _activity_chirp_tick_transmit(void *context) {
activity_state_t *state = (activity_state_t *)context;
uint8_t tone = chirpy_get_next_tone(&state->chirpy_encoder_state);
// Transmission over?
if (tone == 255) {
_activity_quit_chirping();
state->mode = ACTM_CHIRP;
state->counter = 0;
watch_display_string("AC CHIRP ", 0);
return;
}
uint16_t period = chirpy_get_tone_period(tone);
watch_set_buzzer_period(period);
watch_set_buzzer_on();
}
static void _activity_chirp_tick_countdown(void *context) {
activity_state_t *state = (activity_state_t *)context;
// Countdown over: start actual broadcast
if (state->chirpy_tick_state.seq_pos == 8 * 3) {
state->chirpy_tick_state.tick_compare = 3;
state->chirpy_tick_state.tick_count = 2; // tick_compare - 1, so it starts immediately
state->chirpy_tick_state.seq_pos = 0;
state->chirpy_tick_state.tick_fun = _activity_chirp_tick_transmit;
return;
}
// Sound or turn off buzzer
if ((state->chirpy_tick_state.seq_pos % 8) == 0) {
watch_set_buzzer_period(NotePeriods[BUZZER_NOTE_A5]);
watch_set_buzzer_on();
if (state->chirpy_tick_state.seq_pos == 0) {
watch_display_string(" --- ", 4);
} else if (state->chirpy_tick_state.seq_pos == 8) {
watch_display_string(" --", 5);
} else if (state->chirpy_tick_state.seq_pos == 16) {
watch_display_string(" -", 5);
}
} else if ((state->chirpy_tick_state.seq_pos % 8) == 1) {
watch_set_buzzer_off();
}
++state->chirpy_tick_state.seq_pos;
}
static uint8_t _activity_get_next_byte(uint8_t *next_byte) {
uint16_t num_bytes = 2 + activity_log_count * sizeof(activity_item_t);
uint16_t pos = *activity_seq_pos;
// Init counter
if (pos == 0) {
sprintf(activity_buf, "%3d", activity_log_count);
watch_display_string(activity_buf, 5);
}
if (pos == num_bytes) {
return 0;
}
// Two-byte prefix
if (pos < 2) {
(*next_byte) = activity_chirpy_prefix[pos];
}
// Data
else {
pos -= 2;
uint16_t ix = pos / sizeof(activity_item_t);
const activity_item_t *itm = &activity_log_buffer[ix];
uint16_t ofs = pos % sizeof(activity_item_t);
// Update counter when starting new item
if (ofs == 0) {
sprintf(activity_buf, "%3d", activity_log_count - ix);
watch_display_string(activity_buf, 5);
}
// Do this the hard way, byte by byte, to avoid high/low endedness issues
// Higher order bytes first, is our serialization format
uint8_t val;
// watch_date_time start_time;
// uint16_t total_sec;
// uint16_t pause_sec;
// uint8_t activity_type;
if (ofs == 0)
val = (itm->start_time.reg & 0xff000000) >> 24;
else if (ofs == 1)
val = (itm->start_time.reg & 0x00ff0000) >> 16;
else if (ofs == 2)
val = (itm->start_time.reg & 0x0000ff00) >> 8;
else if (ofs == 3)
val = (itm->start_time.reg & 0x000000ff);
else if (ofs == 4)
val = (itm->total_sec & 0xff00) >> 8;
else if (ofs == 5)
val = (itm->total_sec & 0x00ff);
else if (ofs == 6)
val = (itm->pause_sec & 0xff00) >> 8;
else if (ofs == 7)
val = (itm->pause_sec & 0x00ff);
else
val = itm->activity_type;
(*next_byte) = val;
}
++(*activity_seq_pos);
return 1;
}
static void _activity_finish_logging(activity_state_t *state) {
// Save this activity
// If shorter than minimum for log: don't save
// Sanity check about buffer length. This should never happen, but also we never want to overrun by error
if (state->curr_total_sec >= activity_min_length_sec && activity_log_count + 1 < ACTIVITY_LOG_SZ) {
activity_item_t *itm = &activity_log_buffer[activity_log_count];
itm->start_time = state->start_time;
itm->total_sec = state->curr_total_sec;
itm->pause_sec = state->curr_pause_sec;
itm->activity_type = state->type_ix;
++activity_log_count;
}
// Go to DONE animation
// TODO: Not in LE mode
state->mode = ACTM_DONE;
watch_clear_indicator(WATCH_INDICATOR_LAP);
movement_request_tick_frequency(2);
state->counter = 6 * 1;
watch_clear_display();
watch_display_string("AC dONE ", 0);
}
static void _activity_handle_tick(movement_settings_t *settings, activity_state_t *state) {
// Display stopwatch-like duration while logging, alternating with time
if (state->mode == ACTM_LOGGING || state->mode == ACTM_PAUSED) {
++state->counter;
++state->curr_total_sec;
if (state->mode == ACTM_PAUSED)
++state->curr_pause_sec;
// If we've reached max activity length: finish logging
if (state->curr_total_sec == MAX_ACTIVITY_SECONDS) {
_activity_finish_logging(state);
}
// Still logging: refresh display
else {
_activity_update_logging_screen(settings, state);
}
}
// Display countown animation, and exit face when down
else if (state->mode == ACTM_DONE) {
if (state->counter == 0) {
movement_move_to_face(0);
movement_request_tick_frequency(1);
}
else {
uint8_t cd = state->counter % 6;
watch_clear_pixel(activity_anim_pixels[cd][0], activity_anim_pixels[cd][1]);
--state->counter;
cd = state->counter % 6;
watch_set_pixel(activity_anim_pixels[cd][0], activity_anim_pixels[cd][1]);
}
}
// Log size, chirp, clear: return to choose after some time
else if (state->mode == ACTM_LOGSIZE || state->mode == ACTM_CHIRP || state->mode == ACTM_CLEAR) {
++state->counter;
// Leave Log Size after 20 seconds
// Leave Clear after only 10: this is danger zone, we don't like hanging around here
// Leave Chirp after 2 minutes: most likely need to the time to fiddle with mic & Chirpy RX on the computer
uint16_t timeout = 20;
if (state->mode == ACTM_CLEAR) timeout = 10;
else if (state->mode == ACTM_CHIRP) timeout = 120;
if (state->counter > timeout) {
state->mode = ACTM_CHOOSE;
_activity_display_choice(state);
}
}
// Chirping
else if (state->mode == ACTM_CHIRPING) {
++state->chirpy_tick_state.tick_count;
if (state->chirpy_tick_state.tick_count == state->chirpy_tick_state.tick_compare) {
state->chirpy_tick_state.tick_count = 0;
state->chirpy_tick_state.tick_fun(state);
}
}
// Clear confirm: blink CLEAR
else if (state->mode == ACTM_CLEAR_CONFIRM) {
++state->counter;
if ((state->counter % 2) == 0)
watch_display_string("CLEAR ", 4);
else
watch_display_string(" ", 4);
if (state->counter > 12) {
state->mode = ACTM_CHOOSE;
_activity_display_choice(state);
movement_request_tick_frequency(1);
}
}
// Clear done: fill up zeroes, then return to choose screen
else if (state->mode == ACTM_CLEAR_DONE) {
++state->counter;
// Animation done
if (state->counter == 7) {
state->mode = ACTM_CHOOSE;
_activity_display_choice(state);
movement_request_tick_frequency(1);
return;
}
// Display current state of animation
sprintf(activity_buf, " ");
uint8_t nZeros = state->counter + 1;
if (nZeros > 6) nZeros = 6;
for (uint8_t i = 0; i < nZeros; ++i) {
activity_buf[i] = '0';
}
watch_display_string(activity_buf, 4);
}
}
static void _activity_alarm_long(movement_settings_t *settings, activity_state_t *state) {
// On choose face: start logging activity
if (state->mode == ACTM_CHOOSE) {
// If buffer is full: Ignore this long press
if (activity_log_count >= ACTIVITY_LOG_SZ)
return;
// OK, we go ahead and start logging
state->start_time = watch_rtc_get_date_time();
state->curr_total_sec = 0;
state->curr_pause_sec = 0;
state->counter = -1;
state->mode = ACTM_LOGGING;
watch_set_indicator(WATCH_INDICATOR_LAP);
_activity_update_logging_screen(settings, state);
}
// If logging or paused: end logging
else if (state->mode == ACTM_LOGGING || state->mode == ACTM_PAUSED) {
_activity_finish_logging(state);
}
// If chirp: kick off chirping
else if (state->mode == ACTM_CHIRP) {
// Set up our tick handling for countdown beeps
activity_seq_pos = &state->chirpy_tick_state.seq_pos;
state->chirpy_tick_state.tick_compare = 8;
state->chirpy_tick_state.tick_count = 7; // tick_compare - 1, so it starts immediately
state->chirpy_tick_state.seq_pos = 0;
state->chirpy_tick_state.tick_fun = _activity_chirp_tick_countdown;
// Set up chirpy encoder
chirpy_init_encoder(&state->chirpy_encoder_state, _activity_get_next_byte);
// Show bell; switch to 64/sec ticks
watch_set_indicator(WATCH_INDICATOR_BELL);
movement_request_tick_frequency(64);
state->mode = ACTM_CHIRPING;
}
// If clear: confirm (unless empty)
else if (state->mode == ACTM_CLEAR) {
if (activity_log_count == 0)
return;
state->mode = ACTM_CLEAR_CONFIRM;
state->counter = -1;
movement_request_tick_frequency(4);
}
// If clear confirm: do clear.
else if (state->mode == ACTM_CLEAR_CONFIRM) {
_activity_clear_buffers();
activity_log_count = 0;
state->mode = ACTM_CLEAR_DONE;
state->counter = -1;
watch_display_string("0 ", 4);
movement_request_tick_frequency(2);
}
}
static void _activity_alarm_short(movement_settings_t *settings, activity_state_t *state) {
// In the choose face, short ALARM cycles through activities
if (state->mode == ACTM_CHOOSE) {
state->type_ix = (state->type_ix + 1) % num_enabled_activities;
_activity_display_choice(state);
}
// If logging: pause
else if (state->mode == ACTM_LOGGING) {
state->mode = ACTM_PAUSED;
state->counter = 0;
_activity_update_logging_screen(settings, state);
}
// If paused: Update paused seconds count and return to logging
else if (state->mode == ACTM_PAUSED) {
state->mode = ACTM_LOGGING;
state->counter = 0;
_activity_update_logging_screen(settings, state);
}
// If chirping: stoppit
else if (state->mode == ACTM_CHIRPING) {
_activity_quit_chirping();
state->mode = ACTM_CHIRP;
state->counter = 0;
watch_display_string("AC CHIRP ", 0);
}
}
static void _activity_light_short(activity_state_t *state) {
// If choose face: move to log size
if (state->mode == ACTM_CHOOSE) {
state->mode = ACTM_LOGSIZE;
state->counter = 0;
sprintf(activity_buf, "AC L#g%3d", activity_log_count);
watch_display_string(activity_buf, 0);
}
// If log size face: move to chirp
else if (state->mode == ACTM_LOGSIZE) {
state->mode = ACTM_CHIRP;
state->counter = 0;
watch_display_string("AC CHIRP ", 0);
}
// If chirp face: move to clear
else if (state->mode == ACTM_CHIRP) {
state->mode = ACTM_CLEAR;
state->counter = 0;
watch_display_string("AC CLEAR ", 0);
}
// If clear face: return to choose face
else if (state->mode == ACTM_CLEAR || state->mode == ACTM_CLEAR_CONFIRM) {
state->mode = ACTM_CHOOSE;
_activity_display_choice(state);
movement_request_tick_frequency(1);
}
// While logging or paused, light is light
else if (state->mode == ACTM_LOGGING || state->mode == ACTM_PAUSED) {
movement_illuminate_led();
}
// Otherwise, we don't do light.
}
bool activity_face_loop(movement_event_t event, movement_settings_t *settings, void *context) {
activity_state_t *state = (activity_state_t *)context;
switch (event.event_type) {
case EVENT_ACTIVATE:
_activity_activate(settings, state);
break;
case EVENT_TICK:
_activity_handle_tick(settings, state);
break;
case EVENT_MODE_BUTTON_UP:
if (state->mode != ACTM_LOGGING && state->mode != ACTM_PAUSED && state->mode != ACTM_CHIRPING) {
movement_request_tick_frequency(1);
movement_move_to_next_face();
}
break;
case EVENT_LIGHT_BUTTON_UP:
_activity_light_short(state);
break;
case EVENT_ALARM_BUTTON_UP:
// We also receive ALARM press that woke us up from LE state
// Don't want to act on that as if it were a real button press for us
if (state->le_state != 2)
_activity_alarm_short(settings, state);
else
state->le_state = 0;
break;
case EVENT_ALARM_LONG_PRESS:
_activity_alarm_long(settings, state);
break;
case EVENT_TIMEOUT:
if (state->mode != ACTM_LOGGING && state->mode != ACTM_PAUSED &&
state->mode != ACTM_CHIRP && state->mode != ACTM_CHIRPING) {
movement_request_tick_frequency(1);
movement_move_to_face(0);
}
break;
case EVENT_LOW_ENERGY_UPDATE:
state->le_state = 1;
// If we're in paused logging mode: let's lose this activity. Pause is not meant for over an hour.
if (state->mode == ACTM_PAUSED) {
// When waking, face will revert to default screen
state->mode = ACTM_CHOOSE;
watch_display_string("AC SLEEP ", 0);
watch_clear_colon();
watch_clear_indicator(WATCH_INDICATOR_LAP);
watch_clear_indicator(WATCH_INDICATOR_PM);
}
else {
_activity_update_logging_screen(settings, state);
watch_start_tick_animation(500);
}
break;
default:
movement_default_loop_handler(event, settings);
break;
}
// Return true if the watch can enter standby mode. False needed when chirping.
if (state->mode == ACTM_CHIRPING)
return false;
else
return true;
}
void activity_face_resign(movement_settings_t *settings, void *context) {
(void)settings;
(void)context;
// Face should only ever temporarily request a higher frequency, so by the time we're resigning,
// this should not be needed. But we don't want an error to create a situation that drains the battery.
// Rather do this defensively here.
movement_request_tick_frequency(1);
}