2023-01-25 09:23:50 -06:00

274 lines
12 KiB
C

/*
* MIT License
*
* Copyright (c) 2022 Joey Castillo
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include "astronomy_face.h"
#include "watch_utility.h"
#if __EMSCRIPTEN__
#include <emscripten.h>
#endif
#define NUM_AVAILABLE_BODIES 9
static const char astronomy_available_celestial_bodies[NUM_AVAILABLE_BODIES] = {
ASTRO_BODY_SUN,
ASTRO_BODY_MERCURY,
ASTRO_BODY_VENUS,
ASTRO_BODY_MOON,
ASTRO_BODY_MARS,
ASTRO_BODY_JUPITER,
ASTRO_BODY_SATURN,
ASTRO_BODY_URANUS,
ASTRO_BODY_NEPTUNE
};
static const char astronomy_celestial_body_names[NUM_AVAILABLE_BODIES][3] = {
"SO", // Sol
"ME", // Mercury
"VE", // Venus
"LU", // Moon (Luna)
"MA", // Mars
"JU", // Jupiter
"SA", // Saturn
"UR", // Uranus
"NE" // Neptune
};
static void _astronomy_face_recalculate(movement_settings_t *settings, astronomy_state_t *state) {
#if __EMSCRIPTEN__
int16_t browser_lat = EM_ASM_INT({
return lat;
});
int16_t browser_lon = EM_ASM_INT({
return lon;
});
if ((watch_get_backup_data(1) == 0) && (browser_lat || browser_lon)) {
movement_location_t browser_loc;
browser_loc.bit.latitude = browser_lat;
browser_loc.bit.longitude = browser_lon;
watch_store_backup_data(browser_loc.reg, 1);
double lat = (double)browser_lat / 100.0;
double lon = (double)browser_lon / 100.0;
state->latitude_radians = astro_degrees_to_radians(lat);
state->longitude_radians = astro_degrees_to_radians(lon);
}
#endif
watch_date_time date_time = watch_rtc_get_date_time();
uint32_t timestamp = watch_utility_date_time_to_unix_time(date_time, movement_timezone_offsets[settings->bit.time_zone] * 60);
date_time = watch_utility_date_time_from_unix_time(timestamp, 0);
double jd = astro_convert_date_to_julian_date(date_time.unit.year + WATCH_RTC_REFERENCE_YEAR, date_time.unit.month, date_time.unit.day, date_time.unit.hour, date_time.unit.minute, date_time.unit.second);
astro_equatorial_coordinates_t radec_precession = astro_get_ra_dec(jd, astronomy_available_celestial_bodies[state->active_body_index], state->latitude_radians, state->longitude_radians, true);
printf("\nParams to convert: %f %f %f %f %f\n",
jd,
astro_radians_to_degrees(state->latitude_radians),
astro_radians_to_degrees(state->longitude_radians),
astro_radians_to_degrees(radec_precession.right_ascension),
astro_radians_to_degrees(radec_precession.declination));
astro_horizontal_coordinates_t horiz = astro_ra_dec_to_alt_az(jd, state->latitude_radians, state->longitude_radians, radec_precession.right_ascension, radec_precession.declination);
astro_equatorial_coordinates_t radec = astro_get_ra_dec(jd, astronomy_available_celestial_bodies[state->active_body_index], state->latitude_radians, state->longitude_radians, false);
state->altitude = astro_radians_to_degrees(horiz.altitude);
state->azimuth = astro_radians_to_degrees(horiz.azimuth);
state->right_ascension = astro_radians_to_hms(radec.right_ascension);
state->declination = astro_radians_to_dms(radec.declination);
state->distance = radec.distance;
printf("Calculated coordinates for %s on %f: \n\tRA = %f / %2dh %2dm %2ds\n\tDec = %f / %3d° %3d' %3d\"\n\tAzi = %f\n\tAlt = %f\n\tDst = %f AU\n",
astronomy_celestial_body_names[state->active_body_index],
jd,
astro_radians_to_degrees(radec.right_ascension),
state->right_ascension.hours,
state->right_ascension.minutes,
state->right_ascension.seconds,
astro_radians_to_degrees(radec.declination),
state->declination.degrees,
state->declination.minutes,
state->declination.seconds,
state->altitude,
state->azimuth,
state->distance);
}
static void _astronomy_face_update(movement_event_t event, movement_settings_t *settings, astronomy_state_t *state) {
char buf[16];
switch (state->mode) {
case ASTRONOMY_MODE_SELECTING_BODY:
watch_clear_colon();
watch_display_string(" Astro", 4);
if (event.subsecond % 2) {
watch_display_string((char *)astronomy_celestial_body_names[state->active_body_index], 0);
} else {
watch_display_string(" ", 0);
}
if (event.subsecond == 0) {
watch_display_string(" ", 2);
switch (state->animation_state) {
case 0:
watch_set_pixel(0, 7);
watch_set_pixel(2, 6);
break;
case 1:
watch_set_pixel(1, 7);
watch_set_pixel(2, 9);
break;
case 2:
watch_set_pixel(2, 7);
watch_set_pixel(0, 9);
break;
}
state->animation_state = (state->animation_state + 1) % 3;
}
break;
case ASTRONOMY_MODE_CALCULATING:
watch_clear_display();
// this takes a moment and locks the UI, flash C for "Calculating"
watch_start_character_blink('C', 100);
_astronomy_face_recalculate(settings, state);
watch_stop_blink();
state->mode = ASTRONOMY_MODE_DISPLAYING_ALT;
// fall through
case ASTRONOMY_MODE_DISPLAYING_ALT:
sprintf(buf, "%saL%6d", astronomy_celestial_body_names[state->active_body_index], (int16_t)round(state->altitude * 100));
watch_display_string(buf, 0);
break;
case ASTRONOMY_MODE_DISPLAYING_AZI:
sprintf(buf, "%saZ%6d", astronomy_celestial_body_names[state->active_body_index], (int16_t)round(state->azimuth * 100));
watch_display_string(buf, 0);
break;
case ASTRONOMY_MODE_DISPLAYING_RA:
watch_set_colon();
sprintf(buf, "ra H%02d%02d%02d", state->right_ascension.hours, state->right_ascension.minutes, state->right_ascension.seconds);
watch_display_string(buf, 0);
break;
case ASTRONOMY_MODE_DISPLAYING_DEC:
watch_clear_colon();
sprintf(buf, "de %3d%2d%2d", state->declination.degrees, state->declination.minutes, state->declination.seconds);
watch_display_string(buf, 0);
break;
case ASTRONOMY_MODE_DISPLAYING_DIST:
if (state->distance >= 0.00668456) {
// if >= 1,000,000 kilometers (all planets), we display distance in AU.
sprintf(buf, "diAU%6d", (uint16_t)round(state->distance * 100));
} else {
// otherwise distance in kilometers fits in 6 digits. This mode will only happen for Luna.
sprintf(buf, "di K%6ld", (uint32_t)round(state->distance * 149597871.0));
}
watch_display_string(buf, 0);
break;
case ASTRONOMY_MODE_NUM_MODES:
// this case does not happen, but we need it to silence a warning.
break;
}
}
void astronomy_face_setup(movement_settings_t *settings, uint8_t watch_face_index, void ** context_ptr) {
(void) settings;
(void) watch_face_index;
if (*context_ptr == NULL) {
*context_ptr = malloc(sizeof(astronomy_state_t));
memset(*context_ptr, 0, sizeof(astronomy_state_t));
}
}
void astronomy_face_activate(movement_settings_t *settings, void *context) {
(void) settings;
astronomy_state_t *state = (astronomy_state_t *)context;
movement_location_t movement_location = (movement_location_t) watch_get_backup_data(1);
int16_t lat_centi = (int16_t)movement_location.bit.latitude;
int16_t lon_centi = (int16_t)movement_location.bit.longitude;
double lat = (double)lat_centi / 100.0;
double lon = (double)lon_centi / 100.0;
state->latitude_radians = astro_degrees_to_radians(lat);
state->longitude_radians = astro_degrees_to_radians(lon);
movement_request_tick_frequency(4);
}
bool astronomy_face_loop(movement_event_t event, movement_settings_t *settings, void *context) {
astronomy_state_t *state = (astronomy_state_t *)context;
switch (event.event_type) {
case EVENT_ACTIVATE:
case EVENT_TICK:
_astronomy_face_update(event, settings, state);
break;
case EVENT_ALARM_BUTTON_UP:
switch (state->mode) {
case ASTRONOMY_MODE_SELECTING_BODY:
// advance to next celestial body (move to calculations with a long press)
state->active_body_index = (state->active_body_index + 1) % NUM_AVAILABLE_BODIES;
break;
case ASTRONOMY_MODE_CALCULATING:
// ignore button press during calculations
break;
case ASTRONOMY_MODE_DISPLAYING_DIST:
// at last mode, wrap around
state->mode = ASTRONOMY_MODE_DISPLAYING_ALT;
break;
default:
// otherwise, advance to next mode
state->mode++;
break;
}
_astronomy_face_update(event, settings, state);
break;
case EVENT_ALARM_LONG_PRESS:
if (state->mode == ASTRONOMY_MODE_SELECTING_BODY) {
// celestial body selected! this triggers a calculation in the update method.
state->mode = ASTRONOMY_MODE_CALCULATING;
movement_request_tick_frequency(1);
_astronomy_face_update(event, settings, state);
} else if (state->mode != ASTRONOMY_MODE_CALCULATING) {
// in all modes except "doing a calculation", return to the selection screen.
state->mode = ASTRONOMY_MODE_SELECTING_BODY;
movement_request_tick_frequency(4);
_astronomy_face_update(event, settings, state);
}
break;
case EVENT_TIMEOUT:
movement_move_to_face(0);
break;
case EVENT_LOW_ENERGY_UPDATE:
// TODO?
break;
default:
movement_default_loop_handler(event, settings);
break;
}
return true;
}
void astronomy_face_resign(movement_settings_t *settings, void *context) {
(void) settings;
astronomy_state_t *state = (astronomy_state_t *)context;
state->mode = ASTRONOMY_MODE_SELECTING_BODY;
}