The DST code has not yet been fully tested, the upcoming movement refactor is upon us and it will integrate with the micro timezone library anyway. Revert it so that next can be merged into main. This reverts commit ac5bf8cfce67cdb5662aeea618c2eb9511f0d190, reversing changes made to 5a8a49a8c77d6d5ba0f46f0e5b51dec2daba46db.
345 lines
14 KiB
C
345 lines
14 KiB
C
/*
|
|
* MIT License
|
|
*
|
|
* Copyright (c) 2023 Tobias Raayoni Last / @randogoth
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <math.h>
|
|
#include "sunriset.h"
|
|
#include "watch.h"
|
|
#include "watch_utility.h"
|
|
#include "planetary_time_face.h"
|
|
|
|
#if __EMSCRIPTEN__
|
|
#include <emscripten.h>
|
|
#endif
|
|
|
|
// STATIC FUNCTIONS AND CONSTANTS /////////////////////////////////////////////
|
|
|
|
/** @brief Planetary rulers in the Chaldean order from slowest to fastest
|
|
* @details Planetary rulers in the Chaldean order from slowest to fastest:
|
|
* Jupiter, Mars, Sun, Venus, Mercury, Moon
|
|
*/
|
|
static const char planets[7][3] = {"Sa", "Ju", "Ma", "So", "Ve", "Me", "Lu"}; // Latin
|
|
static const char planetes[7][3] = {"Ch", "Ze", "Ar", "He", "Af", "Hr", "Se"}; // Greek
|
|
|
|
/** @brief Ruler of each weekday for easy lookup
|
|
*/
|
|
static const uint8_t plindex[7] = {3, 6, 2, 5, 1, 4, 0}; // day ruler index
|
|
|
|
/** @brief Astrological symbol for each planet
|
|
*/
|
|
static void _planetary_icon(uint8_t planet) {
|
|
|
|
watch_clear_pixel(0, 13);
|
|
watch_clear_pixel(0, 14);
|
|
watch_clear_pixel(1, 13);
|
|
watch_clear_pixel(1, 14);
|
|
watch_clear_pixel(1, 15);
|
|
watch_clear_pixel(2, 13);
|
|
watch_clear_pixel(2, 14);
|
|
watch_clear_pixel(2, 15);
|
|
|
|
switch (planet) {
|
|
case 0: // Saturn
|
|
watch_set_pixel(0, 14);
|
|
watch_set_pixel(2, 14);
|
|
watch_set_pixel(1, 15);
|
|
watch_set_pixel(2, 13);
|
|
break;
|
|
case 1: // Jupiter
|
|
watch_set_pixel(0, 14);
|
|
watch_set_pixel(1, 15);
|
|
watch_set_pixel(1, 14);
|
|
break;
|
|
case 2: // Mars
|
|
watch_set_pixel(2, 14);
|
|
watch_set_pixel(2, 15);
|
|
watch_set_pixel(1, 15);
|
|
watch_set_pixel(2, 13);
|
|
watch_set_pixel(1, 13);\
|
|
break;
|
|
case 3: // Sol
|
|
watch_set_pixel(0, 14);
|
|
watch_set_pixel(2, 14);
|
|
watch_set_pixel(1, 13);
|
|
watch_set_pixel(2, 13);
|
|
watch_set_pixel(0, 13);
|
|
watch_set_pixel(2, 15);
|
|
break;
|
|
case 4: // Venus
|
|
watch_set_pixel(0, 14);
|
|
watch_set_pixel(0, 13);
|
|
watch_set_pixel(1, 13);
|
|
watch_set_pixel(1, 15);
|
|
watch_set_pixel(1, 14);
|
|
break;
|
|
case 5: // Mercury
|
|
watch_set_pixel(0, 14);
|
|
watch_set_pixel(1, 13);
|
|
watch_set_pixel(1, 14);
|
|
watch_set_pixel(1, 15);
|
|
watch_set_pixel(2, 15);
|
|
break;
|
|
case 6: // Luna
|
|
watch_set_pixel(2, 14);
|
|
watch_set_pixel(2, 15);
|
|
watch_set_pixel(2, 13);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/** @details solar phase can be a day phase between sunrise and sunset or an alternating night phase.
|
|
* This function calculates the start and end of the current phase based on a given geographic location.
|
|
*/
|
|
static void _planetary_solar_phase(movement_settings_t *settings, planetary_time_state_t *state) {
|
|
uint8_t phase;
|
|
double sunrise, sunset;
|
|
uint32_t now_epoch, sunrise_epoch, sunset_epoch, midnight_epoch;
|
|
movement_location_t movement_location = (movement_location_t) watch_get_backup_data(1);
|
|
|
|
// check if we have a location. If not, display error
|
|
if (movement_location.reg == 0) {
|
|
watch_display_string(" no Loc", 0);
|
|
state->no_location = true;
|
|
return;
|
|
}
|
|
|
|
// location detected
|
|
state->no_location = false;
|
|
|
|
watch_date_time date_time = watch_rtc_get_date_time(); // the current local date / time
|
|
watch_date_time utc_now = watch_utility_date_time_convert_zone(date_time, movement_timezone_offsets[settings->bit.time_zone] * 60, 0); // the current date / time in UTC
|
|
watch_date_time scratch_time; // scratchpad, contains different values at different times
|
|
watch_date_time midnight;
|
|
scratch_time.reg = midnight.reg = utc_now.reg;
|
|
midnight.unit.hour = midnight.unit.minute = midnight.unit.second = 0; // start of the day at midnight
|
|
|
|
// get location coordinate
|
|
int16_t lat_centi = (int16_t)movement_location.bit.latitude;
|
|
int16_t lon_centi = (int16_t)movement_location.bit.longitude;
|
|
double lat = (double)lat_centi / 100.0;
|
|
double lon = (double)lon_centi / 100.0;
|
|
|
|
// save UTC offset
|
|
state->utc_offset = ((double)movement_timezone_offsets[settings->bit.time_zone]) / 60.0;
|
|
|
|
// get UNIX epoch time
|
|
now_epoch = watch_utility_date_time_to_unix_time(utc_now, 0);
|
|
midnight_epoch = watch_utility_date_time_to_unix_time(midnight, 0);
|
|
|
|
// calculate sunrise and sunset of current day in decimal hours after midnight
|
|
sun_rise_set(scratch_time.unit.year + WATCH_RTC_REFERENCE_YEAR, scratch_time.unit.month, scratch_time.unit.day, lon, lat, &sunrise, &sunset);
|
|
|
|
// calculate sunrise and sunset UNIX timestamps
|
|
sunrise_epoch = midnight_epoch + sunrise * 3600;
|
|
sunset_epoch = midnight_epoch + sunset * 3600;
|
|
|
|
// by default we assume it is daytime (phase 1) between sunrise and sunset
|
|
phase = 1;
|
|
state->night = false;
|
|
state->phase_start = sunrise_epoch;
|
|
state->phase_end = sunset_epoch;
|
|
|
|
// night time calculations
|
|
if ( now_epoch < sunrise_epoch && now_epoch < sunset_epoch ) phase = 0; // morning before dawn
|
|
if ( now_epoch > sunrise_epoch && now_epoch >= sunset_epoch ) phase = 2; // evening after dusk
|
|
|
|
// phase 0: we are before sunrise
|
|
if ( phase == 0) {
|
|
// go back to yesterday and calculate sunset
|
|
midnight_epoch -= 86400;
|
|
scratch_time = watch_utility_date_time_from_unix_time(midnight_epoch, 0);
|
|
sun_rise_set(scratch_time.unit.year + WATCH_RTC_REFERENCE_YEAR, scratch_time.unit.month, scratch_time.unit.day, lon, lat, &sunrise, &sunset);
|
|
sunset_epoch = midnight_epoch + sunset * 3600;
|
|
// we are still in yesterday's night hours
|
|
state->night = true;
|
|
state->phase_start = sunset_epoch;
|
|
state->phase_end = sunrise_epoch;
|
|
}
|
|
|
|
// phase 2: we are after sunset
|
|
if ( phase == 2) {
|
|
// skip to tomorrow and calculate sunrise
|
|
midnight_epoch += 86400;
|
|
scratch_time = watch_utility_date_time_from_unix_time(midnight_epoch, 0);
|
|
sun_rise_set(scratch_time.unit.year + WATCH_RTC_REFERENCE_YEAR, scratch_time.unit.month, scratch_time.unit.day, lon, lat, &sunrise, &sunset);
|
|
sunrise_epoch = midnight_epoch + sunrise * 3600;
|
|
// we are still in yesterday's night hours
|
|
state->night = true;
|
|
state->phase_start = sunset_epoch;
|
|
state->phase_end = sunrise_epoch;
|
|
}
|
|
|
|
// calculate the duration of a planetary second during this solar phase
|
|
// and convert to Hertz so we can call a faster tick rate
|
|
state->freq = (1 / ((double)( state->phase_end - state->phase_start ) / 43200));
|
|
}
|
|
|
|
/** @details A planetary hour is one of exactly twelve hours of a solar phase. Its length varies.
|
|
* This function calculates the current planetary hour and divides it up into relative minutes and seconds.
|
|
* It also calculates the current planetary ruler of the hour and of the day.
|
|
*/
|
|
static void _planetary_time(movement_event_t event, movement_settings_t *settings, planetary_time_state_t *state) {
|
|
char buf[14];
|
|
char ruler[3];
|
|
double night_hour_count = 0.0;
|
|
uint8_t weekday, planet, planetary_hour;
|
|
double hour_duration, current_hour, current_minute, current_second;
|
|
bool set_leading_zero = false;
|
|
|
|
watch_set_colon();
|
|
|
|
// get current time and convert to UTC
|
|
state->scratch = watch_utility_date_time_convert_zone(watch_rtc_get_date_time(), movement_timezone_offsets[settings->bit.time_zone] * 60, 0);
|
|
|
|
// when current phase ends calculate the next phase
|
|
if ( watch_utility_date_time_to_unix_time(state->scratch, 0) >= state->phase_end ) {
|
|
_planetary_solar_phase(settings, state);
|
|
return;
|
|
}
|
|
|
|
if (settings->bit.clock_mode_24h && !settings->bit.clock_24h_leading_zero) watch_set_indicator(WATCH_INDICATOR_24H);
|
|
|
|
// PM for night hours, otherwise the night hours are counted from 13
|
|
if ( state->night ) {
|
|
if (settings->bit.clock_mode_24h) night_hour_count = 12;
|
|
else watch_set_indicator(WATCH_INDICATOR_PM);
|
|
}
|
|
|
|
// calculate the duration of a planetary hour during this solar phase
|
|
hour_duration = (( state->phase_end - state->phase_start)) / 12.0;
|
|
|
|
// which planetary hour are we in?
|
|
|
|
// RTC only provides full second precision, so we have to manually add subseconds with each tick
|
|
current_hour = ((( watch_utility_date_time_to_unix_time(state->scratch, 0) ) + event.subsecond * 0.11111111) - state->phase_start ) / hour_duration;
|
|
planetary_hour = floor(current_hour) + ( state->night ? 12 : 0 );
|
|
current_hour += night_hour_count; //adjust for 24hr display
|
|
current_minute = modf(current_hour, ¤t_hour) * 60.0;
|
|
current_second = modf(current_minute, ¤t_minute) * 60.0;
|
|
|
|
// the day changes after sunrise, so if we are at night it is yesterday's planetary day
|
|
// hence we take the datetime object of when the last solar phase started as the current day
|
|
// and then fill in the hours and minutes
|
|
state->scratch = watch_utility_date_time_from_unix_time(state->phase_start, 0);
|
|
state->scratch.unit.hour = floor(current_hour);
|
|
state->scratch.unit.minute = floor(current_minute);
|
|
state->scratch.unit.second = (uint8_t)floor(current_second) % 60;
|
|
|
|
if (settings->bit.clock_mode_24h && settings->bit.clock_24h_leading_zero && state->scratch.unit.hour < 10)
|
|
set_leading_zero = true;
|
|
|
|
// what weekday is it (0 - 6)
|
|
weekday = watch_utility_get_iso8601_weekday_number(state->scratch.unit.year, state->scratch.unit.month, state->scratch.unit.day) - 1;
|
|
|
|
// planetary ruler of the hour or the day
|
|
if ( state->day_ruler ) planet = plindex[weekday];
|
|
else planet = ( plindex[weekday] + planetary_hour ) % 7;
|
|
|
|
// latin or greek ruler names or astrological symbol
|
|
if ( state->ruler == 0 ) strncpy(ruler, planets[planet], 3);
|
|
if ( state->ruler == 1 ) strncpy(ruler, planetes[planet], 3);
|
|
if ( state->ruler == 2 ) strncpy(ruler, " ", 3);
|
|
|
|
// display planetary time with ruler of the hour or ruler of the day
|
|
if ( state->day_ruler ) sprintf(buf, "%s d%2d%02d%02d", ruler, state->scratch.unit.hour, state->scratch.unit.minute, state->scratch.unit.second);
|
|
else sprintf(buf, "%s h%2d%02d%02d", ruler, state->scratch.unit.hour, state->scratch.unit.minute, state->scratch.unit.second);
|
|
|
|
watch_display_string(buf, 0);
|
|
if (set_leading_zero)
|
|
watch_display_string("0", 4);
|
|
|
|
if ( state->ruler == 2 ) _planetary_icon(planet);
|
|
|
|
}
|
|
|
|
// PUBLIC WATCH FACE FUNCTIONS ////////////////////////////////////////////////
|
|
|
|
void planetary_time_face_setup(movement_settings_t *settings, uint8_t watch_face_index, void ** context_ptr) {
|
|
(void) watch_face_index;
|
|
(void) settings;
|
|
if (*context_ptr == NULL) {
|
|
*context_ptr = malloc(sizeof(planetary_time_state_t));
|
|
memset(*context_ptr, 0, sizeof(planetary_time_state_t));
|
|
}
|
|
}
|
|
|
|
void planetary_time_face_activate(movement_settings_t *settings, void *context) {
|
|
(void) settings;
|
|
if (watch_tick_animation_is_running()) watch_stop_tick_animation();
|
|
|
|
#if __EMSCRIPTEN__
|
|
int16_t browser_lat = EM_ASM_INT({ return lat; });
|
|
int16_t browser_lon = EM_ASM_INT({ return lon; });
|
|
if ((watch_get_backup_data(1) == 0) && (browser_lat || browser_lon)) {
|
|
movement_location_t browser_loc;
|
|
browser_loc.bit.latitude = browser_lat;
|
|
browser_loc.bit.longitude = browser_lon;
|
|
watch_store_backup_data(browser_loc.reg, 1);
|
|
}
|
|
#endif
|
|
|
|
planetary_time_state_t *state = (planetary_time_state_t *)context;
|
|
|
|
// calculate phase
|
|
_planetary_solar_phase(settings, state);
|
|
}
|
|
|
|
bool planetary_time_face_loop(movement_event_t event, movement_settings_t *settings, void *context) {
|
|
planetary_time_state_t *state = (planetary_time_state_t *)context;
|
|
|
|
switch (event.event_type) {
|
|
case EVENT_ACTIVATE:
|
|
_planetary_time(event, settings, state);
|
|
if ( state->freq > 1 )
|
|
// for hours with shorter seconds let's increase the tick to not skip seconds in the display
|
|
movement_request_tick_frequency( 8 );
|
|
break;
|
|
case EVENT_TICK:
|
|
_planetary_time(event, settings, state);
|
|
break;
|
|
case EVENT_LIGHT_BUTTON_UP:
|
|
state->ruler = (state->ruler + 1) % 3;
|
|
break;
|
|
case EVENT_ALARM_BUTTON_UP:
|
|
// Just in case you have need for another button.
|
|
state->day_ruler = !state->day_ruler;
|
|
break;
|
|
case EVENT_LOW_ENERGY_UPDATE:
|
|
watch_start_tick_animation(500);
|
|
break;
|
|
default:
|
|
return movement_default_loop_handler(event, settings);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void planetary_time_face_resign(movement_settings_t *settings, void *context) {
|
|
(void) settings;
|
|
(void) context;
|
|
movement_request_tick_frequency( 1 );
|
|
}
|
|
|