2021-08-31 19:39:37 -04:00

393 lines
14 KiB
C

#include <stdio.h>
#include <string.h>
#include <math.h>
#include "watch.h"
#include "bme280.h"
#include "app.h"
ApplicationState application_state;
char buf[16] = {0};
/**
* @brief Zeroes out the application state struct.
*/
void app_init() {
memset(&application_state, 0, sizeof(application_state));
}
void app_wake_from_deep_sleep() {
// This app does not support deep sleep mode.
}
void app_setup() {
struct calendar_date_time date_time;
watch_get_date_time(&date_time);
if (date_time.date.year < 2020) {
date_time.date.year = 2020;
watch_set_date_time(date_time);
}
watch_enable_external_interrupts();
watch_register_interrupt_callback(BTN_MODE, cb_mode_pressed, INTERRUPT_TRIGGER_RISING);
watch_register_interrupt_callback(BTN_LIGHT, cb_light_pressed, INTERRUPT_TRIGGER_RISING);
watch_register_extwake_callback(BTN_ALARM, cb_alarm_pressed, true);
watch_enable_buzzer();
watch_enable_leds();
// pin A0 powers the sensor on this board.
watch_enable_digital_output(A0);
watch_set_pin_level(A0, true);
delay_ms(10);
watch_enable_i2c();
watch_i2c_write8(BME280_ADDRESS, BME280_REGISTER_SOFTRESET, BME280_SOFT_RESET_CODE);
delay_ms(10);
application_state.dig_T1 = watch_i2c_read16(BME280_ADDRESS, BME280_REGISTER_DIG_T1);
application_state.dig_T2 = (int16_t)watch_i2c_read16(BME280_ADDRESS, BME280_REGISTER_DIG_T2);
application_state.dig_T3 = (int16_t)watch_i2c_read16(BME280_ADDRESS, BME280_REGISTER_DIG_T3);
application_state.dig_H1 = watch_i2c_read8(BME280_ADDRESS, BME280_REGISTER_DIG_H1);
application_state.dig_H2 = (int16_t)watch_i2c_read16(BME280_ADDRESS, BME280_REGISTER_DIG_H2);
application_state.dig_H3 = watch_i2c_read8(BME280_ADDRESS, BME280_REGISTER_DIG_H3);
application_state.dig_H4 = ((int8_t)watch_i2c_read8(BME280_ADDRESS, BME280_REGISTER_DIG_H4) << 4) |
(watch_i2c_read8(BME280_ADDRESS, BME280_REGISTER_DIG_H4 + 1) & 0xF);
application_state.dig_H5 = ((int8_t)watch_i2c_read8(BME280_ADDRESS, BME280_REGISTER_DIG_H5 + 1) << 4) |
(watch_i2c_read8(BME280_ADDRESS, BME280_REGISTER_DIG_H5) >> 4);
application_state.dig_H6 = (int8_t)watch_i2c_read8(BME280_ADDRESS, BME280_REGISTER_DIG_H6);
watch_i2c_write8(BME280_ADDRESS, BME280_REGISTER_CONTROL_HUMID, BME280_CONTROL_HUMID_SAMPLING_NONE);
watch_i2c_write8(BME280_ADDRESS, BME280_REGISTER_CONTROL, BME280_CONTROL_TEMPERATURE_SAMPLING_X16 |
BME280_CONTROL_PRESSURE_SAMPLING_NONE |
BME280_CONTROL_MODE_FORCED);
watch_enable_display();
watch_register_tick_callback(cb_tick);
}
/**
* Nothing to do here.
*/
void app_prepare_for_sleep() {
}
/**
* @todo restore the BME280's calibration values from backup memory
*/
void app_wake_from_sleep() {
}
/**
* Displays the temperature and humidity on screen, or a string indicating no measurements are being taken.
*/
bool app_loop() {
// play a beep if the mode has changed in response to a user's press of the MODE button
if (application_state.mode_changed) {
// low note for nonzero case, high note for return to clock
watch_buzzer_play_note(application_state.mode ? BUZZER_NOTE_C7 : BUZZER_NOTE_C8, 100);
application_state.mode_changed = false;
}
// If the user is not in clock mode and the mode timeout has expired, return them to clock mode
if (application_state.mode != MODE_CLOCK && application_state.mode_ticks == 0) {
application_state.mode = MODE_CLOCK;
application_state.mode_changed = true;
}
// If the LED is off and should be on, turn it on
if (application_state.light_ticks > 0 && !application_state.led_on) {
watch_set_led_green();
application_state.led_on = true;
}
// if the LED is on and should be off, turn it off
if (application_state.led_on && application_state.light_ticks == 0) {
// unless the user is holding down the LIGHT button, in which case, give them more time.
if (watch_get_pin_level(BTN_LIGHT)) {
application_state.light_ticks = 3;
} else {
watch_set_led_off();
application_state.led_on = false;
}
}
switch (application_state.mode) {
case MODE_CLOCK:
do_clock_mode();
break;
case MODE_TEMP:
do_temp_mode();
break;
case MODE_LOG:
do_log_mode();
break;
case MODE_PREFS:
do_prefs_mode();
break;
case MODE_SET:
do_set_time_mode();
break;
case NUM_MODES:
// dummy case, just silences a warning
break;
}
application_state.mode_changed = false;
return true;
}
/**
* Reads the temperature from the BME280
* @param p_t_fine - an optional pointer to an int32_t; if provided, the t_fine measurement
* (required for humidity calculation) will be returned by reference.
* Pass in NULL if you do not care about this value.
* @return a float indicating the temperature in degrees celsius.
*/
float read_temperature(int32_t *p_t_fine) {
// read24 reads the bytes into a uint32 which works for little-endian values (MSB is 0)
uint32_t raw_data = watch_i2c_read24(BME280_ADDRESS, BME280_REGISTER_TEMP_DATA) >> 8;
// alas the sensor's register layout is big-endian-ish, with a nibble of zeroes at the end of the LSB.
// this line shuffles everything back into place (swaps LSB and MSB and shifts the zeroes off the end)
int32_t adc_value = (((raw_data >> 16) | (raw_data & 0xFF00) | (raw_data << 16)) & 0xFFFFFF) >> 4;
// this bit is cribbed from Adafruit's BME280 driver. support their open source efforts by buying some stuff!
int32_t var1 = ((((adc_value >> 3) - ((int32_t)application_state.dig_T1 << 1))) * ((int32_t)application_state.dig_T2)) >> 11;
int32_t var2 = (((((adc_value >> 4) - ((int32_t)application_state.dig_T1)) * ((adc_value >> 4) - ((int32_t)application_state.dig_T1))) >> 12) * ((int32_t)application_state.dig_T3)) >> 14;
int32_t t_fine = var1 + var2;
// if we got a pointer to a t_fine, return it by reference (for humidity calculation).
if (p_t_fine != NULL) *p_t_fine = t_fine;
if (application_state.is_fahrenheit) {
return (((t_fine * 5 + 128) >> 8) / 100.0) * 1.8 + 32;
} else {
return ((t_fine * 5 + 128) >> 8) / 100.0;
}
}
/**
* Reads the humidity from the BME280
* @param t_fine - the t_fine measurement from a call to read_temperature
* @return a float indicating the relative humidity as a percentage from 0-100.
* @todo the returned value is glitchy, need to fix.
*/
float read_humidity(int32_t t_fine) {
int32_t adc_value = watch_i2c_read16(BME280_ADDRESS, BME280_REGISTER_HUMID_DATA);
// again, cribbed from Adafruit's BME280 driver. they sell a great breakout board for this sensor!
int32_t v_x1_u32r = (t_fine - ((int32_t)76800));
v_x1_u32r = (((((adc_value << 14) - (((int32_t)application_state.dig_H4) << 20) - (((int32_t)application_state.dig_H5) * v_x1_u32r)) +
((int32_t)16384)) >> 15) * (((((((v_x1_u32r * ((int32_t)application_state.dig_H6)) >> 10) * (((v_x1_u32r * ((int32_t)application_state.dig_H3)) >> 11) +
((int32_t)32768))) >> 10) + ((int32_t)2097152)) * ((int32_t)application_state.dig_H2) + 8192) >> 14));
v_x1_u32r = (v_x1_u32r - (((((v_x1_u32r >> 15) * (v_x1_u32r >> 15)) >> 7) * ((int32_t)application_state.dig_H1)) >> 4));
v_x1_u32r = (v_x1_u32r < 0) ? 0 : v_x1_u32r;
v_x1_u32r = (v_x1_u32r > 419430400) ? 419430400 : v_x1_u32r;
float h = (v_x1_u32r >> 12);
return h / 1024.0;
}
void log_data() {
struct calendar_date_time date_time;
watch_get_date_time(&date_time);
uint8_t hour = date_time.time.hour;
int8_t temperature = read_temperature(NULL);
for(int i = 0; i < MAX_DATA_POINTS - 1; i++) {
application_state.logged_data[i] = application_state.logged_data[i + 1];
}
application_state.logged_data[MAX_DATA_POINTS - 1].is_valid = true;
application_state.logged_data[MAX_DATA_POINTS - 1].hour = hour;
application_state.logged_data[MAX_DATA_POINTS - 1].temperature = temperature;
}
void do_clock_mode() {
struct calendar_date_time date_time;
const char months[12][3] = {"JA", "FE", "MR", "AR", "MA", "JN", "JL", "AU", "SE", "OC", "NO", "dE"};
watch_get_date_time(&date_time);
watch_display_string((char *)months[date_time.date.month - 1], 0);
sprintf(buf, "%2d%2d%02d%02d", date_time.date.day, date_time.time.hour, date_time.time.min, date_time.time.sec);
watch_display_string(buf, 2);
watch_set_colon();
}
void do_temp_mode() {
int32_t t_fine;
float temperature;
float humidity;
// take one reading
watch_i2c_write8(BME280_ADDRESS, BME280_REGISTER_CONTROL, BME280_CONTROL_TEMPERATURE_SAMPLING_X16 |
BME280_CONTROL_MODE_FORCED);
// wait for reading to finish
while(watch_i2c_read8(BME280_ADDRESS, BME280_REGISTER_STATUS) & BME280_STATUS_UPDATING_MASK);
temperature = read_temperature(&t_fine);
humidity = read_humidity(t_fine);
if (application_state.show_humidity) {
sprintf(buf, "TE%2d%4.1f#%c", (int)(humidity / 10), temperature, application_state.is_fahrenheit ? 'F' : 'C');
} else {
sprintf(buf, "TE %4.1f#%c", temperature, application_state.is_fahrenheit ? 'F' : 'C');
}
watch_display_string(buf, 0);
watch_clear_colon();
}
void do_log_mode() {
bool is_valid = (uint8_t)(application_state.logged_data[MAX_DATA_POINTS - 1 - application_state.page].is_valid);
uint8_t hour = (uint8_t)(application_state.logged_data[MAX_DATA_POINTS - 1 - application_state.page].hour);
int8_t temperature = (int8_t)(application_state.logged_data[MAX_DATA_POINTS - 1 - application_state.page].temperature);
if (!is_valid) {
sprintf(buf, "LO%2d------", application_state.page);
watch_clear_colon();
} else {
sprintf(buf, "LO%2d%2d%4d", application_state.page, hour, temperature);
watch_set_colon();
}
watch_display_string(buf, 0);
}
void log_mode_handle_primary_button() {
application_state.page++;
if (application_state.page == MAX_DATA_POINTS) application_state.page = 0;
}
void do_prefs_mode() {
sprintf(buf, "PR CorF %c", application_state.is_fahrenheit ? 'F' : 'C');
watch_display_string(buf, 0);
watch_clear_colon();
}
void prefs_mode_handle_primary_button() {
// TODO: add rest of preferences (12/24, humidity, LED color, etc.)
// for now only one, C or F
}
void prefs_mode_handle_secondary_button() {
application_state.is_fahrenheit = !application_state.is_fahrenheit;
}
void do_set_time_mode() {
struct calendar_date_time date_time;
watch_get_date_time(&date_time);
watch_display_string(" ", 0);
switch (application_state.page) {
case 0: // hour
sprintf(buf, "ST t%2d", date_time.time.hour);
break;
case 1: // minute
sprintf(buf, "ST t %02d", date_time.time.min);
break;
case 2: // second
sprintf(buf, "ST t %02d", date_time.time.sec);
break;
case 3: // year
sprintf(buf, "ST d%2d", date_time.date.year - 2000);
break;
case 4: // month
sprintf(buf, "ST d %02d", date_time.date.month);
break;
case 5: // day
sprintf(buf, "ST d %02d", date_time.date.day);
break;
}
watch_display_string(buf, 0);
watch_set_pixel(1, 12); // required for T in position 1
}
void set_time_mode_handle_primary_button() {
application_state.page++;
if (application_state.page == 6) application_state.page = 0;
}
void set_time_mode_handle_secondary_button() {
struct calendar_date_time date_time;
watch_get_date_time(&date_time);
const uint8_t days_in_month[12] = {31, 28, 31, 30, 31, 30, 30, 31, 30, 31, 30, 31};
switch (application_state.page) {
case 0: // hour
date_time.time.hour = (date_time.time.hour + 1) % 24;
break;
case 1: // minute
date_time.time.min = (date_time.time.min + 1) % 60;
break;
case 2: // second
date_time.time.sec = 0;
break;
case 3: // year
// only allow 2021-2030. fix this sometime next decade
date_time.date.year = ((date_time.date.year % 10) + 1) + 2020;
break;
case 4: // month
date_time.date.month = ((date_time.date.month + 1) % 12);
break;
case 5: // day
date_time.date.day = date_time.date.day + 1;
// can't set to the 29th on a leap year. if it's february 29, set to 11:59 on the 28th.
// and it should roll over.
if (date_time.date.day > days_in_month[date_time.date.month - 1]) {
date_time.date.day = 1;
}
break;
}
watch_set_date_time(date_time);
}
void cb_mode_pressed() {
application_state.mode = (application_state.mode + 1) % NUM_MODES;
application_state.mode_changed = true;
application_state.mode_ticks = 300;
application_state.page = 0;
}
void cb_light_pressed() {
switch (application_state.mode) {
case MODE_PREFS:
prefs_mode_handle_secondary_button();
break;
case MODE_SET:
set_time_mode_handle_secondary_button();
break;
default:
application_state.light_ticks = 3;
break;
}
}
void cb_alarm_pressed() {
switch (application_state.mode) {
case MODE_LOG:
log_mode_handle_primary_button();
break;
case MODE_PREFS:
prefs_mode_handle_primary_button();
break;
case MODE_SET:
set_time_mode_handle_primary_button();
break;
default:
break;
}
}
void cb_tick() {
// TODO: use alarm interrupt to trigger data acquisition.
struct calendar_date_time date_time;
watch_get_date_time(&date_time);
if (date_time.time.min == 0 && date_time.time.sec == 0) {
log_data();
}
if (application_state.light_ticks > 0) {
application_state.light_ticks--;
}
if (application_state.mode_ticks > 0) {
application_state.mode_ticks--;
}
}