Matheus Afonso Martins Moreira a9d503b807 Revert PR #470 - implement automatic DST toggling
The DST code has not yet been fully tested, the upcoming movement
refactor is upon us and it will integrate with the micro timezone
library anyway. Revert it so that next can be merged into main.

This reverts commit ac5bf8cfce67cdb5662aeea618c2eb9511f0d190, reversing
changes made to 5a8a49a8c77d6d5ba0f46f0e5b51dec2daba46db.
2024-09-17 17:28:32 -03:00

274 lines
12 KiB
C

/*
* MIT License
*
* Copyright (c) 2022 Joey Castillo
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include "astronomy_face.h"
#include "watch_utility.h"
#if __EMSCRIPTEN__
#include <emscripten.h>
#endif
#define NUM_AVAILABLE_BODIES 9
static const char astronomy_available_celestial_bodies[NUM_AVAILABLE_BODIES] = {
ASTRO_BODY_SUN,
ASTRO_BODY_MERCURY,
ASTRO_BODY_VENUS,
ASTRO_BODY_MOON,
ASTRO_BODY_MARS,
ASTRO_BODY_JUPITER,
ASTRO_BODY_SATURN,
ASTRO_BODY_URANUS,
ASTRO_BODY_NEPTUNE
};
static const char astronomy_celestial_body_names[NUM_AVAILABLE_BODIES][3] = {
"SO", // Sol
"ME", // Mercury
"VE", // Venus
"LU", // Moon (Luna)
"MA", // Mars
"JU", // Jupiter
"SA", // Saturn
"UR", // Uranus
"NE" // Neptune
};
static void _astronomy_face_recalculate(movement_settings_t *settings, astronomy_state_t *state) {
#if __EMSCRIPTEN__
int16_t browser_lat = EM_ASM_INT({
return lat;
});
int16_t browser_lon = EM_ASM_INT({
return lon;
});
if ((watch_get_backup_data(1) == 0) && (browser_lat || browser_lon)) {
movement_location_t browser_loc;
browser_loc.bit.latitude = browser_lat;
browser_loc.bit.longitude = browser_lon;
watch_store_backup_data(browser_loc.reg, 1);
double lat = (double)browser_lat / 100.0;
double lon = (double)browser_lon / 100.0;
state->latitude_radians = astro_degrees_to_radians(lat);
state->longitude_radians = astro_degrees_to_radians(lon);
}
#endif
watch_date_time date_time = watch_rtc_get_date_time();
uint32_t timestamp = watch_utility_date_time_to_unix_time(date_time, movement_timezone_offsets[settings->bit.time_zone] * 60);
date_time = watch_utility_date_time_from_unix_time(timestamp, 0);
double jd = astro_convert_date_to_julian_date(date_time.unit.year + WATCH_RTC_REFERENCE_YEAR, date_time.unit.month, date_time.unit.day, date_time.unit.hour, date_time.unit.minute, date_time.unit.second);
astro_equatorial_coordinates_t radec_precession = astro_get_ra_dec(jd, astronomy_available_celestial_bodies[state->active_body_index], state->latitude_radians, state->longitude_radians, true);
printf("\nParams to convert: %f %f %f %f %f\n",
jd,
astro_radians_to_degrees(state->latitude_radians),
astro_radians_to_degrees(state->longitude_radians),
astro_radians_to_degrees(radec_precession.right_ascension),
astro_radians_to_degrees(radec_precession.declination));
astro_horizontal_coordinates_t horiz = astro_ra_dec_to_alt_az(jd, state->latitude_radians, state->longitude_radians, radec_precession.right_ascension, radec_precession.declination);
astro_equatorial_coordinates_t radec = astro_get_ra_dec(jd, astronomy_available_celestial_bodies[state->active_body_index], state->latitude_radians, state->longitude_radians, false);
state->altitude = astro_radians_to_degrees(horiz.altitude);
state->azimuth = astro_radians_to_degrees(horiz.azimuth);
state->right_ascension = astro_radians_to_hms(radec.right_ascension);
state->declination = astro_radians_to_dms(radec.declination);
state->distance = radec.distance;
printf("Calculated coordinates for %s on %f: \n\tRA = %f / %2dh %2dm %2ds\n\tDec = %f / %3d° %3d' %3d\"\n\tAzi = %f\n\tAlt = %f\n\tDst = %f AU\n",
astronomy_celestial_body_names[state->active_body_index],
jd,
astro_radians_to_degrees(radec.right_ascension),
state->right_ascension.hours,
state->right_ascension.minutes,
state->right_ascension.seconds,
astro_radians_to_degrees(radec.declination),
state->declination.degrees,
state->declination.minutes,
state->declination.seconds,
state->altitude,
state->azimuth,
state->distance);
}
static void _astronomy_face_update(movement_event_t event, movement_settings_t *settings, astronomy_state_t *state) {
char buf[16];
switch (state->mode) {
case ASTRONOMY_MODE_SELECTING_BODY:
watch_clear_colon();
watch_display_string(" Astro", 4);
if (event.subsecond % 2) {
watch_display_string((char *)astronomy_celestial_body_names[state->active_body_index], 0);
} else {
watch_display_string(" ", 0);
}
if (event.subsecond == 0) {
watch_display_string(" ", 2);
switch (state->animation_state) {
case 0:
watch_set_pixel(0, 7);
watch_set_pixel(2, 6);
break;
case 1:
watch_set_pixel(1, 7);
watch_set_pixel(2, 9);
break;
case 2:
watch_set_pixel(2, 7);
watch_set_pixel(0, 9);
break;
}
state->animation_state = (state->animation_state + 1) % 3;
}
break;
case ASTRONOMY_MODE_CALCULATING:
watch_clear_display();
// this takes a moment and locks the UI, flash C for "Calculating"
watch_start_character_blink('C', 100);
_astronomy_face_recalculate(settings, state);
watch_stop_blink();
state->mode = ASTRONOMY_MODE_DISPLAYING_ALT;
// fall through
case ASTRONOMY_MODE_DISPLAYING_ALT:
sprintf(buf, "%saL%6d", astronomy_celestial_body_names[state->active_body_index], (int16_t)round(state->altitude * 100));
watch_display_string(buf, 0);
break;
case ASTRONOMY_MODE_DISPLAYING_AZI:
sprintf(buf, "%saZ%6d", astronomy_celestial_body_names[state->active_body_index], (int16_t)round(state->azimuth * 100));
watch_display_string(buf, 0);
break;
case ASTRONOMY_MODE_DISPLAYING_RA:
watch_set_colon();
sprintf(buf, "ra H%02d%02d%02d", state->right_ascension.hours, state->right_ascension.minutes, state->right_ascension.seconds);
watch_display_string(buf, 0);
break;
case ASTRONOMY_MODE_DISPLAYING_DEC:
watch_clear_colon();
sprintf(buf, "de %3d%2d%2d", state->declination.degrees, state->declination.minutes, state->declination.seconds);
watch_display_string(buf, 0);
break;
case ASTRONOMY_MODE_DISPLAYING_DIST:
if (state->distance >= 0.00668456) {
// if >= 1,000,000 kilometers (all planets), we display distance in AU.
sprintf(buf, "diAU%6d", (uint16_t)round(state->distance * 100));
} else {
// otherwise distance in kilometers fits in 6 digits. This mode will only happen for Luna.
sprintf(buf, "di K%6ld", (uint32_t)round(state->distance * 149597871.0));
}
watch_display_string(buf, 0);
break;
case ASTRONOMY_MODE_NUM_MODES:
// this case does not happen, but we need it to silence a warning.
break;
}
}
void astronomy_face_setup(movement_settings_t *settings, uint8_t watch_face_index, void ** context_ptr) {
(void) settings;
(void) watch_face_index;
if (*context_ptr == NULL) {
*context_ptr = malloc(sizeof(astronomy_state_t));
memset(*context_ptr, 0, sizeof(astronomy_state_t));
}
}
void astronomy_face_activate(movement_settings_t *settings, void *context) {
(void) settings;
astronomy_state_t *state = (astronomy_state_t *)context;
movement_location_t movement_location = (movement_location_t) watch_get_backup_data(1);
int16_t lat_centi = (int16_t)movement_location.bit.latitude;
int16_t lon_centi = (int16_t)movement_location.bit.longitude;
double lat = (double)lat_centi / 100.0;
double lon = (double)lon_centi / 100.0;
state->latitude_radians = astro_degrees_to_radians(lat);
state->longitude_radians = astro_degrees_to_radians(lon);
movement_request_tick_frequency(4);
}
bool astronomy_face_loop(movement_event_t event, movement_settings_t *settings, void *context) {
astronomy_state_t *state = (astronomy_state_t *)context;
switch (event.event_type) {
case EVENT_ACTIVATE:
case EVENT_TICK:
_astronomy_face_update(event, settings, state);
break;
case EVENT_ALARM_BUTTON_UP:
switch (state->mode) {
case ASTRONOMY_MODE_SELECTING_BODY:
// advance to next celestial body (move to calculations with a long press)
state->active_body_index = (state->active_body_index + 1) % NUM_AVAILABLE_BODIES;
break;
case ASTRONOMY_MODE_CALCULATING:
// ignore button press during calculations
break;
case ASTRONOMY_MODE_DISPLAYING_DIST:
// at last mode, wrap around
state->mode = ASTRONOMY_MODE_DISPLAYING_ALT;
break;
default:
// otherwise, advance to next mode
state->mode++;
break;
}
_astronomy_face_update(event, settings, state);
break;
case EVENT_ALARM_LONG_PRESS:
if (state->mode == ASTRONOMY_MODE_SELECTING_BODY) {
// celestial body selected! this triggers a calculation in the update method.
state->mode = ASTRONOMY_MODE_CALCULATING;
movement_request_tick_frequency(1);
_astronomy_face_update(event, settings, state);
} else if (state->mode != ASTRONOMY_MODE_CALCULATING) {
// in all modes except "doing a calculation", return to the selection screen.
state->mode = ASTRONOMY_MODE_SELECTING_BODY;
movement_request_tick_frequency(4);
_astronomy_face_update(event, settings, state);
}
break;
case EVENT_TIMEOUT:
movement_move_to_face(0);
break;
case EVENT_LOW_ENERGY_UPDATE:
// TODO?
break;
default:
movement_default_loop_handler(event, settings);
break;
}
return true;
}
void astronomy_face_resign(movement_settings_t *settings, void *context) {
(void) settings;
astronomy_state_t *state = (astronomy_state_t *)context;
state->mode = ASTRONOMY_MODE_SELECTING_BODY;
}