2024-09-22 14:26:49 -04:00

306 lines
9.8 KiB
C

/*
* MIT License
*
* Copyright (c) 2020 Joey Castillo
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "watch_tcc.h"
#include "delay.h"
#include "tcc.h"
#include "tc.h"
void _watch_enable_tcc(void);
void cb_watch_buzzer_seq(void);
static uint16_t _seq_position;
static int8_t _tone_ticks, _repeat_counter;
static bool _callback_running = false;
static int8_t *_sequence;
static void (*_cb_finished)(void);
static void _tcc_write_RUNSTDBY(bool value) {
// enables or disables RUNSTDBY of the tcc
tcc_disable(0);
tcc_set_run_in_standby(0, value);
tcc_enable(0);
}
static inline void _tc3_start() {
// start the TC3 timer
tc_enable(3);
_callback_running = true;
}
static inline void _tc3_stop() {
// stop the TC3 timer
tc_disable(3);
_callback_running = false;
}
static void _tc3_initialize() {
// setup and initialize TC3 for a 64 Hz interrupt
tc_init(3, GENERIC_CLOCK_3, TC_PRESCALER_DIV64);
tc_set_counter_mode(3, TC_COUNTER_MODE_8BIT);
tc_set_run_in_standby(3, true);
tc_count8_set_period(3, 7); // 32 Khz divided by 64 divided by 8 equals 64 Hz
/// FIXME: #SecondMovement, we need a gossamer wrapper for interrupts.
TC3->COUNT8.INTENSET.bit.OVF = 1;
NVIC_ClearPendingIRQ(TC3_IRQn);
NVIC_EnableIRQ (TC3_IRQn);
}
void watch_buzzer_play_sequence(int8_t *note_sequence, void (*callback_on_end)(void)) {
if (_callback_running) _tc3_stop();
watch_set_buzzer_off();
_sequence = note_sequence;
_cb_finished = callback_on_end;
_seq_position = 0;
_tone_ticks = 0;
_repeat_counter = -1;
// prepare buzzer
watch_enable_buzzer();
// setup TC3 timer
_tc3_initialize();
// TCC should run in standby mode
_tcc_write_RUNSTDBY(true);
// start the timer (for the 64 hz callback)
_tc3_start();
}
void cb_watch_buzzer_seq(void) {
// callback for reading the note sequence
if (_tone_ticks == 0) {
if (_sequence[_seq_position] < 0 && _sequence[_seq_position + 1]) {
// repeat indicator found
if (_repeat_counter == -1) {
// first encounter: load repeat counter
_repeat_counter = _sequence[_seq_position + 1];
} else _repeat_counter--;
if (_repeat_counter > 0)
// rewind
if (_seq_position > _sequence[_seq_position] * -2)
_seq_position += _sequence[_seq_position] * 2;
else
_seq_position = 0;
else {
// continue
_seq_position += 2;
_repeat_counter = -1;
}
}
if (_sequence[_seq_position] && _sequence[_seq_position + 1]) {
// read note
watch_buzzer_note_t note = _sequence[_seq_position];
if (note != BUZZER_NOTE_REST) {
watch_set_buzzer_period_and_duty_cycle(NotePeriods[note], 25);
watch_set_buzzer_on();
} else watch_set_buzzer_off();
// set duration ticks and move to next tone
_tone_ticks = _sequence[_seq_position + 1];
_seq_position += 2;
} else {
// end the sequence
watch_buzzer_abort_sequence();
if (_cb_finished) _cb_finished();
}
} else _tone_ticks--;
}
void watch_buzzer_abort_sequence(void) {
// ends/aborts the sequence
if (_callback_running) _tc3_stop();
watch_set_buzzer_off();
// disable standby mode for TCC
_tcc_write_RUNSTDBY(false);
}
void irq_handler_tc3(void) {
// interrupt handler for TC3 (globally!)
cb_watch_buzzer_seq();
TC3->COUNT8.INTFLAG.reg |= TC_INTFLAG_OVF;
}
bool watch_is_buzzer_or_led_enabled(void){
return tcc_is_enabled(0);
}
inline void watch_enable_buzzer(void) {
if (!tcc_is_enabled(0)) {
_watch_enable_tcc();
}
}
void watch_set_buzzer_period_and_duty_cycle(uint32_t period, uint8_t duty) {
tcc_set_period(0, period, true);
tcc_set_cc(0, (WATCH_BUZZER_TCC_CHANNEL) % 4, period / (100 / duty), true);
}
void watch_disable_buzzer(void) {
_watch_disable_tcc();
}
inline void watch_set_buzzer_on(void) {
HAL_GPIO_BUZZER_out();
HAL_GPIO_BUZZER_pmuxen(HAL_GPIO_PMUX_TCC_ALT);
}
inline void watch_set_buzzer_off(void) {
HAL_GPIO_BUZZER_pmuxdis();
HAL_GPIO_BUZZER_off();
}
void watch_buzzer_play_note(watch_buzzer_note_t note, uint16_t duration_ms) {
watch_buzzer_play_note_with_volume(note, duration_ms, WATCH_BUZZER_VOLUME_LOUD);
}
void watch_buzzer_play_note_with_volume(watch_buzzer_note_t note, uint16_t duration_ms, watch_buzzer_volume_t volume) {
if (note == BUZZER_NOTE_REST) {
watch_set_buzzer_off();
} else {
watch_set_buzzer_period_and_duty_cycle(NotePeriods[note], volume == WATCH_BUZZER_VOLUME_SOFT ? 5 : 25);
watch_set_buzzer_on();
}
delay_ms(duration_ms);
watch_set_buzzer_off();
}
void _watch_enable_tcc(void) {
// set up the TCC with a 1 MHz clock, but there's a trick:
if (USB->DEVICE.CTRLA.bit.ENABLE) {
// if USB is enabled, we are running an 8 MHz clock, so we divide by 8.
tcc_init(0, GENERIC_CLOCK_0, TCC_PRESCALER_DIV8);
} else {
// otherwise it's 4 Mhz and we divide by 4.
tcc_init(0, GENERIC_CLOCK_0, TCC_PRESCALER_DIV4);
}
// We're going to use normal PWM mode, which means period is controlled by PER, and duty cycle is controlled by
// each compare channel's value:
// * Buzzer tones are set by setting PER to the desired period for a given frequency, and CC[1] to half of that
// period (i.e. a square wave with a 50% duty cycle).
// * LEDs on CC[0] CC[2] and CC[3] can be set to any value from 0 (off) to PER (fully on).
tcc_set_wavegen(0, TCC_WAVEGEN_NORMAL_PWM);
#ifdef WATCH_INVERT_LED_POLARITY
// invert all channels, we'll flip the buzzer back in just a moment.
// this is easier than writing a maze of #ifdefs.
tcc_set_channel_polarity(0, 4, TCC_CHANNEL_POLARITY_INVERTED);
tcc_set_channel_polarity(0, 5, TCC_CHANNEL_POLARITY_INVERTED);
tcc_set_channel_polarity(0, 6, TCC_CHANNEL_POLARITY_INVERTED);
tcc_set_channel_polarity(0, 7, TCC_CHANNEL_POLARITY_INVERTED);
#endif // WATCH_INVERT_LED_POLARITY
tcc_set_channel_polarity(0, WATCH_BUZZER_TCC_CHANNEL, TCC_CHANNEL_POLARITY_NORMAL);
// Set the period to 1 kHz to start.
tcc_set_period(0, 1000, false);
// Set the duty cycle of all pins to 0: LED's off, buzzer not buzzing.
tcc_set_cc(0, (WATCH_BUZZER_TCC_CHANNEL) % 4, 0, false);
tcc_set_cc(0, (WATCH_RED_TCC_CHANNEL) % 4, 0, false);
#ifdef WATCH_GREEN_TCC_CHANNEL
tcc_set_cc(0, (WATCH_GREEN_TCC_CHANNEL) % 4, 0, false);
#endif
#ifdef WATCH_BLUE_TCC_CHANNEL
tcc_set_cc(0, (WATCH_BLUE_TCC_CHANNEL) % 4, 0, false);
#endif
// enable LED PWM pins (the LED driver assumes if the TCC is on, the pins are enabled)
HAL_GPIO_RED_pmuxen(HAL_GPIO_PMUX_TCC_ALT);
HAL_GPIO_RED_out();
#ifdef WATCH_GREEN_TCC_CHANNEL
HAL_GPIO_GREEN_pmuxen(HAL_GPIO_PMUX_TCC_ALT);
HAL_GPIO_GREEN_out();
#endif
#ifdef WATCH_BLUE_TCC_CHANNEL
HAL_GPIO_BLUE_pmuxen(HAL_GPIO_PMUX_TCC_ALT);
HAL_GPIO_BLUE_out();
#endif
// Enable the TCC
tcc_enable(0);
}
void _watch_disable_tcc(void) {
// disable all PWM pins
HAL_GPIO_BUZZER_pmuxdis();
HAL_GPIO_BUZZER_off();
HAL_GPIO_RED_pmuxdis();
HAL_GPIO_RED_off();
#ifdef WATCH_GREEN_TCC_CHANNEL
HAL_GPIO_GREEN_pmuxdis();
HAL_GPIO_GREEN_off();
#endif
#ifdef WATCH_BLUE_TCC_CHANNEL
HAL_GPIO_BLUE_pmuxdis();
HAL_GPIO_BLUE_off();
#endif
tcc_disable(0);
}
void watch_enable_leds(void) {
if (!tcc_is_enabled(0)) {
_watch_enable_tcc();
}
}
void watch_disable_leds(void) {
_watch_disable_tcc();
}
void watch_set_led_color(uint8_t red, uint8_t green) {
#ifdef WATCH_BLUE_TCC_CHANNEL
watch_set_led_color_rgb(red, green, 0);
#else
watch_set_led_color_rgb(red, green, green);
#endif
}
void watch_set_led_color_rgb(uint8_t red, uint8_t green, uint8_t blue) {
if (tcc_is_enabled(0)) {
uint32_t period = tcc_get_period(0);
tcc_set_cc(0, (WATCH_RED_TCC_CHANNEL) % 4, ((period * (uint32_t)red * 1000ull) / 255000ull), true);
#ifdef WATCH_GREEN_TCC_CHANNEL
tcc_set_cc(0, (WATCH_GREEN_TCC_CHANNEL) % 4, ((period * (uint32_t)green * 1000ull) / 255000ull), true);
#else
(void) green; // silence warning
#endif
#ifdef WATCH_BLUE_TCC_CHANNEL
tcc_set_cc(0, (WATCH_BLUE_TCC_CHANNEL) % 4, ((period * (uint32_t)blue * 1000ull) / 255000ull), true);
#else
(void) blue; // silence warning
#endif
}
}
void watch_set_led_red(void) {
watch_set_led_color_rgb(255, 0, 0);
}
void watch_set_led_green(void) {
watch_set_led_color_rgb(0, 255, 0);
}
void watch_set_led_yellow(void) {
watch_set_led_color_rgb(255, 255, 0);
}
void watch_set_led_off(void) {
watch_set_led_color_rgb(0, 0, 0);
}