306 lines
9.8 KiB
C
306 lines
9.8 KiB
C
/*
|
|
* MIT License
|
|
*
|
|
* Copyright (c) 2020 Joey Castillo
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
|
|
#include "watch_tcc.h"
|
|
#include "delay.h"
|
|
#include "tcc.h"
|
|
#include "tc.h"
|
|
|
|
void _watch_enable_tcc(void);
|
|
void cb_watch_buzzer_seq(void);
|
|
|
|
static uint16_t _seq_position;
|
|
static int8_t _tone_ticks, _repeat_counter;
|
|
static bool _callback_running = false;
|
|
static int8_t *_sequence;
|
|
static void (*_cb_finished)(void);
|
|
|
|
static void _tcc_write_RUNSTDBY(bool value) {
|
|
// enables or disables RUNSTDBY of the tcc
|
|
tcc_disable(0);
|
|
tcc_set_run_in_standby(0, value);
|
|
tcc_enable(0);
|
|
}
|
|
|
|
static inline void _tc3_start() {
|
|
// start the TC3 timer
|
|
tc_enable(3);
|
|
_callback_running = true;
|
|
}
|
|
|
|
static inline void _tc3_stop() {
|
|
// stop the TC3 timer
|
|
tc_disable(3);
|
|
_callback_running = false;
|
|
}
|
|
|
|
static void _tc3_initialize() {
|
|
// setup and initialize TC3 for a 64 Hz interrupt
|
|
tc_init(3, GENERIC_CLOCK_3, TC_PRESCALER_DIV64);
|
|
tc_set_counter_mode(3, TC_COUNTER_MODE_8BIT);
|
|
tc_set_run_in_standby(3, true);
|
|
tc_count8_set_period(3, 7); // 32 Khz divided by 64 divided by 8 equals 64 Hz
|
|
/// FIXME: #SecondMovement, we need a gossamer wrapper for interrupts.
|
|
TC3->COUNT8.INTENSET.bit.OVF = 1;
|
|
NVIC_ClearPendingIRQ(TC3_IRQn);
|
|
NVIC_EnableIRQ (TC3_IRQn);
|
|
}
|
|
|
|
void watch_buzzer_play_sequence(int8_t *note_sequence, void (*callback_on_end)(void)) {
|
|
if (_callback_running) _tc3_stop();
|
|
watch_set_buzzer_off();
|
|
_sequence = note_sequence;
|
|
_cb_finished = callback_on_end;
|
|
_seq_position = 0;
|
|
_tone_ticks = 0;
|
|
_repeat_counter = -1;
|
|
// prepare buzzer
|
|
watch_enable_buzzer();
|
|
// setup TC3 timer
|
|
_tc3_initialize();
|
|
// TCC should run in standby mode
|
|
_tcc_write_RUNSTDBY(true);
|
|
// start the timer (for the 64 hz callback)
|
|
_tc3_start();
|
|
}
|
|
|
|
void cb_watch_buzzer_seq(void) {
|
|
// callback for reading the note sequence
|
|
if (_tone_ticks == 0) {
|
|
if (_sequence[_seq_position] < 0 && _sequence[_seq_position + 1]) {
|
|
// repeat indicator found
|
|
if (_repeat_counter == -1) {
|
|
// first encounter: load repeat counter
|
|
_repeat_counter = _sequence[_seq_position + 1];
|
|
} else _repeat_counter--;
|
|
if (_repeat_counter > 0)
|
|
// rewind
|
|
if (_seq_position > _sequence[_seq_position] * -2)
|
|
_seq_position += _sequence[_seq_position] * 2;
|
|
else
|
|
_seq_position = 0;
|
|
else {
|
|
// continue
|
|
_seq_position += 2;
|
|
_repeat_counter = -1;
|
|
}
|
|
}
|
|
if (_sequence[_seq_position] && _sequence[_seq_position + 1]) {
|
|
// read note
|
|
watch_buzzer_note_t note = _sequence[_seq_position];
|
|
if (note != BUZZER_NOTE_REST) {
|
|
watch_set_buzzer_period_and_duty_cycle(NotePeriods[note], 25);
|
|
watch_set_buzzer_on();
|
|
} else watch_set_buzzer_off();
|
|
// set duration ticks and move to next tone
|
|
_tone_ticks = _sequence[_seq_position + 1];
|
|
_seq_position += 2;
|
|
} else {
|
|
// end the sequence
|
|
watch_buzzer_abort_sequence();
|
|
if (_cb_finished) _cb_finished();
|
|
}
|
|
} else _tone_ticks--;
|
|
}
|
|
|
|
void watch_buzzer_abort_sequence(void) {
|
|
// ends/aborts the sequence
|
|
if (_callback_running) _tc3_stop();
|
|
watch_set_buzzer_off();
|
|
// disable standby mode for TCC
|
|
_tcc_write_RUNSTDBY(false);
|
|
}
|
|
|
|
void irq_handler_tc3(void) {
|
|
// interrupt handler for TC3 (globally!)
|
|
cb_watch_buzzer_seq();
|
|
TC3->COUNT8.INTFLAG.reg |= TC_INTFLAG_OVF;
|
|
}
|
|
|
|
bool watch_is_buzzer_or_led_enabled(void){
|
|
return tcc_is_enabled(0);
|
|
}
|
|
|
|
inline void watch_enable_buzzer(void) {
|
|
if (!tcc_is_enabled(0)) {
|
|
_watch_enable_tcc();
|
|
}
|
|
}
|
|
|
|
void watch_set_buzzer_period_and_duty_cycle(uint32_t period, uint8_t duty) {
|
|
tcc_set_period(0, period, true);
|
|
tcc_set_cc(0, (WATCH_BUZZER_TCC_CHANNEL) % 4, period / (100 / duty), true);
|
|
}
|
|
|
|
void watch_disable_buzzer(void) {
|
|
_watch_disable_tcc();
|
|
}
|
|
|
|
inline void watch_set_buzzer_on(void) {
|
|
HAL_GPIO_BUZZER_out();
|
|
HAL_GPIO_BUZZER_pmuxen(HAL_GPIO_PMUX_TCC_ALT);
|
|
}
|
|
|
|
inline void watch_set_buzzer_off(void) {
|
|
HAL_GPIO_BUZZER_pmuxdis();
|
|
HAL_GPIO_BUZZER_off();
|
|
}
|
|
|
|
void watch_buzzer_play_note(watch_buzzer_note_t note, uint16_t duration_ms) {
|
|
watch_buzzer_play_note_with_volume(note, duration_ms, WATCH_BUZZER_VOLUME_LOUD);
|
|
}
|
|
|
|
void watch_buzzer_play_note_with_volume(watch_buzzer_note_t note, uint16_t duration_ms, watch_buzzer_volume_t volume) {
|
|
if (note == BUZZER_NOTE_REST) {
|
|
watch_set_buzzer_off();
|
|
} else {
|
|
watch_set_buzzer_period_and_duty_cycle(NotePeriods[note], volume == WATCH_BUZZER_VOLUME_SOFT ? 5 : 25);
|
|
watch_set_buzzer_on();
|
|
}
|
|
delay_ms(duration_ms);
|
|
watch_set_buzzer_off();
|
|
}
|
|
|
|
void _watch_enable_tcc(void) {
|
|
// set up the TCC with a 1 MHz clock, but there's a trick:
|
|
if (USB->DEVICE.CTRLA.bit.ENABLE) {
|
|
// if USB is enabled, we are running an 8 MHz clock, so we divide by 8.
|
|
tcc_init(0, GENERIC_CLOCK_0, TCC_PRESCALER_DIV8);
|
|
} else {
|
|
// otherwise it's 4 Mhz and we divide by 4.
|
|
tcc_init(0, GENERIC_CLOCK_0, TCC_PRESCALER_DIV4);
|
|
}
|
|
// We're going to use normal PWM mode, which means period is controlled by PER, and duty cycle is controlled by
|
|
// each compare channel's value:
|
|
// * Buzzer tones are set by setting PER to the desired period for a given frequency, and CC[1] to half of that
|
|
// period (i.e. a square wave with a 50% duty cycle).
|
|
// * LEDs on CC[0] CC[2] and CC[3] can be set to any value from 0 (off) to PER (fully on).
|
|
tcc_set_wavegen(0, TCC_WAVEGEN_NORMAL_PWM);
|
|
#ifdef WATCH_INVERT_LED_POLARITY
|
|
// invert all channels, we'll flip the buzzer back in just a moment.
|
|
// this is easier than writing a maze of #ifdefs.
|
|
tcc_set_channel_polarity(0, 4, TCC_CHANNEL_POLARITY_INVERTED);
|
|
tcc_set_channel_polarity(0, 5, TCC_CHANNEL_POLARITY_INVERTED);
|
|
tcc_set_channel_polarity(0, 6, TCC_CHANNEL_POLARITY_INVERTED);
|
|
tcc_set_channel_polarity(0, 7, TCC_CHANNEL_POLARITY_INVERTED);
|
|
#endif // WATCH_INVERT_LED_POLARITY
|
|
tcc_set_channel_polarity(0, WATCH_BUZZER_TCC_CHANNEL, TCC_CHANNEL_POLARITY_NORMAL);
|
|
|
|
// Set the period to 1 kHz to start.
|
|
tcc_set_period(0, 1000, false);
|
|
|
|
// Set the duty cycle of all pins to 0: LED's off, buzzer not buzzing.
|
|
tcc_set_cc(0, (WATCH_BUZZER_TCC_CHANNEL) % 4, 0, false);
|
|
tcc_set_cc(0, (WATCH_RED_TCC_CHANNEL) % 4, 0, false);
|
|
#ifdef WATCH_GREEN_TCC_CHANNEL
|
|
tcc_set_cc(0, (WATCH_GREEN_TCC_CHANNEL) % 4, 0, false);
|
|
#endif
|
|
#ifdef WATCH_BLUE_TCC_CHANNEL
|
|
tcc_set_cc(0, (WATCH_BLUE_TCC_CHANNEL) % 4, 0, false);
|
|
#endif
|
|
|
|
// enable LED PWM pins (the LED driver assumes if the TCC is on, the pins are enabled)
|
|
HAL_GPIO_RED_pmuxen(HAL_GPIO_PMUX_TCC_ALT);
|
|
HAL_GPIO_RED_out();
|
|
#ifdef WATCH_GREEN_TCC_CHANNEL
|
|
HAL_GPIO_GREEN_pmuxen(HAL_GPIO_PMUX_TCC_ALT);
|
|
HAL_GPIO_GREEN_out();
|
|
#endif
|
|
#ifdef WATCH_BLUE_TCC_CHANNEL
|
|
HAL_GPIO_BLUE_pmuxen(HAL_GPIO_PMUX_TCC_ALT);
|
|
HAL_GPIO_BLUE_out();
|
|
#endif
|
|
|
|
// Enable the TCC
|
|
tcc_enable(0);
|
|
}
|
|
|
|
void _watch_disable_tcc(void) {
|
|
// disable all PWM pins
|
|
HAL_GPIO_BUZZER_pmuxdis();
|
|
HAL_GPIO_BUZZER_off();
|
|
HAL_GPIO_RED_pmuxdis();
|
|
HAL_GPIO_RED_off();
|
|
#ifdef WATCH_GREEN_TCC_CHANNEL
|
|
HAL_GPIO_GREEN_pmuxdis();
|
|
HAL_GPIO_GREEN_off();
|
|
#endif
|
|
#ifdef WATCH_BLUE_TCC_CHANNEL
|
|
HAL_GPIO_BLUE_pmuxdis();
|
|
HAL_GPIO_BLUE_off();
|
|
#endif
|
|
tcc_disable(0);
|
|
}
|
|
|
|
void watch_enable_leds(void) {
|
|
if (!tcc_is_enabled(0)) {
|
|
_watch_enable_tcc();
|
|
}
|
|
}
|
|
|
|
void watch_disable_leds(void) {
|
|
_watch_disable_tcc();
|
|
}
|
|
|
|
void watch_set_led_color(uint8_t red, uint8_t green) {
|
|
#ifdef WATCH_BLUE_TCC_CHANNEL
|
|
watch_set_led_color_rgb(red, green, 0);
|
|
#else
|
|
watch_set_led_color_rgb(red, green, green);
|
|
#endif
|
|
}
|
|
|
|
void watch_set_led_color_rgb(uint8_t red, uint8_t green, uint8_t blue) {
|
|
if (tcc_is_enabled(0)) {
|
|
uint32_t period = tcc_get_period(0);
|
|
tcc_set_cc(0, (WATCH_RED_TCC_CHANNEL) % 4, ((period * (uint32_t)red * 1000ull) / 255000ull), true);
|
|
#ifdef WATCH_GREEN_TCC_CHANNEL
|
|
tcc_set_cc(0, (WATCH_GREEN_TCC_CHANNEL) % 4, ((period * (uint32_t)green * 1000ull) / 255000ull), true);
|
|
#else
|
|
(void) green; // silence warning
|
|
#endif
|
|
#ifdef WATCH_BLUE_TCC_CHANNEL
|
|
tcc_set_cc(0, (WATCH_BLUE_TCC_CHANNEL) % 4, ((period * (uint32_t)blue * 1000ull) / 255000ull), true);
|
|
#else
|
|
(void) blue; // silence warning
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void watch_set_led_red(void) {
|
|
watch_set_led_color_rgb(255, 0, 0);
|
|
}
|
|
|
|
void watch_set_led_green(void) {
|
|
watch_set_led_color_rgb(0, 255, 0);
|
|
}
|
|
|
|
void watch_set_led_yellow(void) {
|
|
watch_set_led_color_rgb(255, 255, 0);
|
|
}
|
|
|
|
void watch_set_led_off(void) {
|
|
watch_set_led_color_rgb(0, 0, 0);
|
|
}
|