2023-04-16 10:49:03 -04:00

403 lines
16 KiB
C

/*
* MIT License
*
* Copyright (c) 2023 Tobias Raayoni Last / @randogoth
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "sunriset.h"
#include "watch.h"
#include "watch_utility.h"
#include "planetary_hours_face.h"
#if __EMSCRIPTEN__
#include <emscripten.h>
#endif
// STATIC FUNCTIONS AND CONSTANTS /////////////////////////////////////////////
/** @brief Planetary rulers in the Chaldean order from slowest to fastest
* @details Planetary rulers in the Chaldean order from slowest to fastest:
* Jupiter, Mars, Sun, Venus, Mercury, Moon
*/
static const char planets[7][3] = {"Sa", "Ju", "Ma", "So", "Ve", "Me", "Lu"}; // Latin
static const char planetes[7][3] = {"Ch", "Ze", "Ar", "He", "Af", "Hr", "Se"}; // Greek
/** @brief Ruler of each weekday for easy lookup
*/
static const uint8_t plindex[7] = {3, 6, 2, 5, 1, 4, 0}; // day ruler index
/** @brief Astrological symbol for each planet
*/
static void _planetary_icon(uint8_t planet) {
watch_clear_pixel(0, 13);
watch_clear_pixel(0, 14);
watch_clear_pixel(1, 13);
watch_clear_pixel(1, 14);
watch_clear_pixel(1, 15);
watch_clear_pixel(2, 13);
watch_clear_pixel(2, 14);
watch_clear_pixel(2, 15);
switch (planet) {
case 0: // Saturn
watch_set_pixel(0, 14);
watch_set_pixel(2, 14);
watch_set_pixel(1, 15);
watch_set_pixel(2, 13);
break;
case 1: // Jupiter
watch_set_pixel(0, 14);
watch_set_pixel(1, 15);
watch_set_pixel(1, 14);
break;
case 2: // Mars
watch_set_pixel(2, 14);
watch_set_pixel(2, 15);
watch_set_pixel(1, 15);
watch_set_pixel(2, 13);
watch_set_pixel(1, 13);\
break;
case 3: // Sol
watch_set_pixel(0, 14);
watch_set_pixel(2, 14);
watch_set_pixel(1, 13);
watch_set_pixel(2, 13);
watch_set_pixel(0, 13);
watch_set_pixel(2, 15);
break;
case 4: // Venus
watch_set_pixel(0, 14);
watch_set_pixel(0, 13);
watch_set_pixel(1, 13);
watch_set_pixel(1, 15);
watch_set_pixel(1, 14);
break;
case 5: // Mercury
watch_set_pixel(0, 14);
watch_set_pixel(1, 13);
watch_set_pixel(1, 14);
watch_set_pixel(1, 15);
watch_set_pixel(2, 15);
break;
case 6: // Luna
watch_set_pixel(2, 14);
watch_set_pixel(2, 15);
watch_set_pixel(2, 13);
break;
}
}
/** @details A solar phase can be a day phase between sunrise and sunset or an alternating night phase.
* This function calculates the start and end of the current phase based on a given geographic location.
* It also calculates the start of the next following phase.
*/
static void _planetary_solar_phases(movement_settings_t *settings, planetary_hours_state_t *state) {
uint8_t phase, h;
double sunrise, sunset;
double hour_duration, next_hour_duration;
uint32_t now_epoch;
uint32_t sunrise_epoch_today, sunset_epoch_today, midnight_epoch_today;
uint32_t sunset_epoch_yesterday, midnight_epoch_yesterday;
uint32_t sunrise_epoch_tomorrow, sunset_epoch_tomorrow, midnight_epoch_tomorrow;
movement_location_t movement_location = (movement_location_t) watch_get_backup_data(1);
// check if we have a location. If not, display error
if (movement_location.reg == 0) {
watch_display_string(" no Loc", 0);
state->no_location = true;
return;
}
// location detected
state->no_location = false;
watch_date_time date_time = watch_rtc_get_date_time(); // the current local date / time
watch_date_time utc_now = watch_utility_date_time_convert_zone(date_time, movement_timezone_offsets[settings->bit.time_zone] * 60, 0); // the current date / time in UTC
watch_date_time scratch_time; // scratchpad, contains different values at different times
watch_date_time midnight;
scratch_time.reg = midnight.reg = utc_now.reg;
midnight.unit.hour = midnight.unit.minute = midnight.unit.second = 0; // start of the day at midnight
// get location coordinate
int16_t lat_centi = (int16_t)movement_location.bit.latitude;
int16_t lon_centi = (int16_t)movement_location.bit.longitude;
double lat = (double)lat_centi / 100.0;
double lon = (double)lon_centi / 100.0;
// save UTC offset
state->utc_offset = ((double)movement_timezone_offsets[settings->bit.time_zone]) / 60.0;
// calculate sunrise and sunset of current day in decimal hours after midnight
sun_rise_set(scratch_time.unit.year + WATCH_RTC_REFERENCE_YEAR, scratch_time.unit.month, scratch_time.unit.day, lon, lat, &sunrise, &sunset);
// calculate sunrise and sunset UNIX timestamps
midnight_epoch_today = watch_utility_date_time_to_unix_time(midnight, 0);
sunrise_epoch_today = midnight_epoch_today + sunrise * 3600;
sunset_epoch_today = midnight_epoch_today + sunset * 3600;
// go back to yesterday and calculate sunset
midnight_epoch_yesterday = midnight_epoch_today - 86400;
scratch_time = watch_utility_date_time_from_unix_time(midnight_epoch_yesterday, 0);
sun_rise_set(scratch_time.unit.year + WATCH_RTC_REFERENCE_YEAR, scratch_time.unit.month, scratch_time.unit.day, lon, lat, &sunrise, &sunset);
sunset_epoch_yesterday = midnight_epoch_yesterday + sunset * 3600;
// go to tomorrow and calculate sunrise and sunset
midnight_epoch_tomorrow = midnight_epoch_today + 86400;
scratch_time = watch_utility_date_time_from_unix_time(midnight_epoch_tomorrow, 0);
sun_rise_set(scratch_time.unit.year + WATCH_RTC_REFERENCE_YEAR, scratch_time.unit.month, scratch_time.unit.day, lon, lat, &sunrise, &sunset);
sunrise_epoch_tomorrow = midnight_epoch_tomorrow + sunrise * 3600;
sunset_epoch_tomorrow = midnight_epoch_tomorrow + sunset * 3600;
// get UNIX epoch time
now_epoch = watch_utility_date_time_to_unix_time(utc_now, 0);
// by default we assume it is daytime (phase 1) between sunrise and sunset
phase = 1;
state->phase_start = sunrise_epoch_today;
state->phase_end = sunset_epoch_today;
state->phase_next = sunrise_epoch_tomorrow;
state->start_at_night = false;
// night time calculations
if ( now_epoch < sunrise_epoch_today && now_epoch < sunset_epoch_today ) phase = 0; // morning before dawn
if ( now_epoch > sunrise_epoch_today && now_epoch >= sunset_epoch_today ) phase = 2; // evening after dusk
// phase 0: we are before sunrise
if ( phase == 0) {
state->phase_start = sunset_epoch_yesterday;
state->phase_end = sunrise_epoch_today;
state->phase_next = sunset_epoch_today;
state->start_at_night = true;
}
// phase 2: we are after sunset
if ( phase == 2) {
state->phase_start = sunset_epoch_today;
state->phase_end = sunrise_epoch_tomorrow;
state->phase_next = sunset_epoch_tomorrow;
state->start_at_night = true;
}
// calculate the duration of a planetary hour during this and the next solar phase
hour_duration = ( state->phase_end - state->phase_start ) / 12.0;
next_hour_duration = ( state->phase_next - state->phase_end ) / 12.0;
// populate list of 24 planetary hour start points in UNIX timestamp format
// starting from the beginning of the current phase
for ( h = 0; h < 24; h++ ) {
if ( h < 12 ) state->planetary_hours[h] = state->phase_start + h * hour_duration; // current phase
else state->planetary_hours[h] = state->phase_end + ( h - 12 ) * next_hour_duration; // next phase
}
// initialize
state->hour = 0;
state->ruler = 0;
state->skip_to_current = true;
}
/** @details A planetary hour is one of exactly twelve hours of a solar phase. Its length varies.
* This function calculates the current planetary hour and divides it up into relative minutes and seconds.
* It also calculates the current planetary ruler of the hour and of the day.
*/
static void _planetary_hours(movement_settings_t *settings, planetary_hours_state_t *state) {
char buf[14];
char ruler[3];
uint8_t weekday, planet, planetary_hour;
uint32_t current_hour_epoch;
watch_date_time scratch_time;
// check if we have a location. If not, display error
if ( state->no_location ) {
watch_display_string(" no Loc", 0);
return;
}
// get current time
watch_date_time date_time = watch_rtc_get_date_time(); // the current local date / time
watch_date_time utc_now = watch_utility_date_time_convert_zone(date_time, movement_timezone_offsets[settings->bit.time_zone] * 60, 0); // the current date / time in UTC
current_hour_epoch = watch_utility_date_time_to_unix_time(utc_now, 0);
// set the current planetary hour as default screen
if ( state->skip_to_current ) {
state->hour = ( current_hour_epoch - state->phase_start ) / (( state->phase_end - state->phase_start ) / 12.0);
state->skip_to_current = false;
}
// when current phase ends calculate the next phase
if ( watch_utility_date_time_to_unix_time(utc_now, 0) >= state->phase_end ) {
_planetary_solar_phases(settings, state);
return;
}
if (settings->bit.clock_mode_24h) watch_set_indicator(WATCH_INDICATOR_24H);
// roll over hour iterator
if ( state->hour < 0 ) state->hour = 23;
if ( state->hour > 23 ) state->hour = 0;
if ( state->ruler < 0 ) state->hour = 2;
if ( state->ruler > 2 ) state->hour = 0;
// clear indicators
watch_clear_indicator(WATCH_INDICATOR_BELL);
watch_clear_indicator(WATCH_INDICATOR_LAP);
// display bell indicator when displaying the current planetary hour
if ( state->hour < 24 )
if ( current_hour_epoch >= state->planetary_hours[state->hour] && current_hour_epoch < state->planetary_hours[state->hour + 1]) {
watch_set_indicator(WATCH_INDICATOR_BELL);
}
// display LAP indicator when the hours of the next phase belong to the next day
if ( state->start_at_night == true && state->hour > 11 )
watch_set_indicator(WATCH_INDICATOR_LAP);
// determine weekday from start of current phase
scratch_time = watch_utility_date_time_from_unix_time(state->phase_start, 0);
scratch_time = watch_utility_date_time_convert_zone(scratch_time, 0, state->utc_offset * 3600);
weekday = watch_utility_get_iso8601_weekday_number(scratch_time.unit.year, scratch_time.unit.month, scratch_time.unit.day) - 1;
// which planetary hour are we in?
planetary_hour = state->hour % 12;
// accomodate night hour count
if ( state->hour < 12 ) {
if ( state->start_at_night ) {
planetary_hour += 12;
}
} else {
if ( state->start_at_night ) {
weekday = ( weekday + 1 ) % 7;
} else {
planetary_hour += 12;
}
}
// make datetime object for selected planetary hour
scratch_time = watch_utility_date_time_from_unix_time(state->planetary_hours[state->hour], 0);
scratch_time = watch_utility_date_time_convert_zone(scratch_time, 0, state->utc_offset * 3600);
// round minutes
if (scratch_time.unit.second < 30 && scratch_time.unit.minute > 0 ) scratch_time.unit.minute--;
else if ( scratch_time.unit.minute < 59 ) scratch_time.unit.minute++;
// if we are in 12 hour mode, do some cleanup
if (!settings->bit.clock_mode_24h) {
if (scratch_time.unit.hour < 12) {
watch_clear_indicator(WATCH_INDICATOR_PM);
} else {
watch_set_indicator(WATCH_INDICATOR_PM);
}
scratch_time.unit.hour %= 12;
if (scratch_time.unit.hour == 0) scratch_time.unit.hour = 12;
}
// planetary ruler of the hour
planet = ( plindex[weekday] + planetary_hour ) % 7;
// latin or greek ruler names or astrological symbol
if ( state->ruler == 0 ) strncpy(ruler, planets[planet], 3);
if ( state->ruler == 1 ) strncpy(ruler, planetes[planet], 3);
if ( state->ruler == 2 ) strncpy(ruler, " ", 3);
// display planetary time with ruler of the hour or ruler of the day
sprintf(buf, "%s%2d%2d%02d ", ruler, (planetary_hour % 24) + 1, scratch_time.unit.hour, scratch_time.unit.minute);
watch_set_colon();
watch_display_string(buf, 0);
if ( state->ruler == 2 ) _planetary_icon(planet);
}
// PUBLIC WATCH FACE FUNCTIONS ////////////////////////////////////////////////
void planetary_hours_face_setup(movement_settings_t *settings, uint8_t watch_face_index, void ** context_ptr) {
(void) watch_face_index;
(void) settings;
if (*context_ptr == NULL) {
*context_ptr = malloc(sizeof(planetary_hours_state_t));
memset(*context_ptr, 0, sizeof(planetary_hours_state_t));
}
}
void planetary_hours_face_activate(movement_settings_t *settings, void *context) {
(void) settings;
if (watch_tick_animation_is_running()) watch_stop_tick_animation();
#if __EMSCRIPTEN__
int16_t browser_lat = EM_ASM_INT({ return lat; });
int16_t browser_lon = EM_ASM_INT({ return lon; });
if ((watch_get_backup_data(1) == 0) && (browser_lat || browser_lon)) {
movement_location_t browser_loc;
browser_loc.bit.latitude = browser_lat;
browser_loc.bit.longitude = browser_lon;
watch_store_backup_data(browser_loc.reg, 1);
}
#endif
planetary_hours_state_t *state = (planetary_hours_state_t *)context;
_planetary_solar_phases(settings, state);
}
bool planetary_hours_face_loop(movement_event_t event, movement_settings_t *settings, void *context) {
planetary_hours_state_t *state = (planetary_hours_state_t *)context;
switch (event.event_type) {
case EVENT_ACTIVATE:
// Show your initial UI here.
watch_clear_indicator(WATCH_INDICATOR_PM);
watch_clear_indicator(WATCH_INDICATOR_24H);
_planetary_hours(settings, state);
break;
case EVENT_LIGHT_BUTTON_UP:
state->ruler = (state->ruler + 1) % 3;
_planetary_hours(settings, state);
break;
case EVENT_LIGHT_LONG_PRESS:
state->skip_to_current = true;
_planetary_hours(settings, state);
break;
case EVENT_ALARM_BUTTON_UP:
state->hour++;
_planetary_hours(settings, state);
break;
case EVENT_ALARM_LONG_PRESS:
state->hour--;
_planetary_hours(settings, state);
break;
default:
return movement_default_loop_handler(event, settings);
}
return true;
}
void planetary_hours_face_resign(movement_settings_t *settings, void *context) {
(void) settings;
(void) context;
}