port buzzer and LED functions to gossamer framework

This commit is contained in:
joeycastillo 2024-09-18 14:47:53 -04:00
parent 5ba64844e2
commit 29f020e207
11 changed files with 120 additions and 233 deletions

View File

@ -29,7 +29,9 @@ INCLUDES += \
# Add your source files here.
SRCS += \
./watch-library/hardware/watch/watch_buzzer.c \
./watch-library/hardware/watch/watch_gpio.c \
./watch-library/hardware/watch/watch_led.c \
./app.c \
# Finally, leave this line at the bottom of the file.

6
app.c
View File

@ -6,13 +6,13 @@ void app_init(void) {
}
void app_setup(void) {
watch_enable_digital_output(HAL_GPIO_GREEN_pin());
watch_enable_leds();
}
bool app_loop(void) {
watch_set_pin_level(HAL_GPIO_GREEN_pin(), true);
watch_set_led_yellow();
delay_ms(500);
watch_set_pin_level(HAL_GPIO_GREEN_pin(), false);
watch_set_led_off();
delay_ms(500);
return false;

View File

@ -38,10 +38,6 @@ void SYSTEM_Handler(void) {
}
}
bool watch_is_buzzer_or_led_enabled(void){
return hri_mclk_get_APBCMASK_TCC0_bit(MCLK);
}
bool watch_is_usb_enabled(void) {
return USB->DEVICE.CTRLA.bit.ENABLE;
}

View File

@ -23,136 +23,25 @@
*/
#include "watch_buzzer.h"
#include "watch_private_buzzer.h"
#include "../../../watch-library/hardware/include/saml22j18a.h"
#include "../../../watch-library/hardware/include/component/tc.h"
#include "../../../watch-library/hardware/hri/hri_tc_l22.h"
#include "watch_private.h"
#include "delay.h"
#include "tcc.h"
void cb_watch_buzzer_seq(void);
void _watch_enable_tcc(void);
static uint16_t _seq_position;
static int8_t _tone_ticks, _repeat_counter;
static bool _callback_running = false;
static int8_t *_sequence;
static void (*_cb_finished)(void);
static void _tcc_write_RUNSTDBY(bool value) {
// enables or disables RUNSTDBY of the tcc
hri_tcc_clear_CTRLA_ENABLE_bit(TCC0);
hri_tcc_write_CTRLA_RUNSTDBY_bit(TCC0, value);
hri_tcc_set_CTRLA_ENABLE_bit(TCC0);
hri_tcc_wait_for_sync(TCC0, TCC_SYNCBUSY_ENABLE);
}
static inline void _tc3_start() {
// start the TC3 timer
hri_tc_set_CTRLA_ENABLE_bit(TC3);
_callback_running = true;
}
static inline void _tc3_stop() {
// stop the TC3 timer
hri_tc_clear_CTRLA_ENABLE_bit(TC3);
hri_tc_wait_for_sync(TC3, TC_SYNCBUSY_ENABLE);
_callback_running = false;
}
static void _tc3_initialize() {
// setup and initialize TC3 for a 64 Hz interrupt
hri_mclk_set_APBCMASK_TC3_bit(MCLK);
hri_gclk_write_PCHCTRL_reg(GCLK, TC3_GCLK_ID, GCLK_PCHCTRL_GEN_GCLK3 | GCLK_PCHCTRL_CHEN);
_tc3_stop();
hri_tc_write_CTRLA_reg(TC3, TC_CTRLA_SWRST);
hri_tc_wait_for_sync(TC3, TC_SYNCBUSY_SWRST);
hri_tc_write_CTRLA_reg(TC3, TC_CTRLA_PRESCALER_DIV64 |
TC_CTRLA_MODE_COUNT8 |
TC_CTRLA_RUNSTDBY);
hri_tccount8_write_PER_reg(TC3, 7); // 32 Khz divided by 64 divided by 8 equals 64 Hz
hri_tc_set_INTEN_OVF_bit(TC3);
NVIC_ClearPendingIRQ(TC3_IRQn);
NVIC_EnableIRQ (TC3_IRQn);
}
void watch_buzzer_play_sequence(int8_t *note_sequence, void (*callback_on_end)(void)) {
if (_callback_running) _tc3_stop();
watch_set_buzzer_off();
_sequence = note_sequence;
_cb_finished = callback_on_end;
_seq_position = 0;
_tone_ticks = 0;
_repeat_counter = -1;
// prepare buzzer
watch_enable_buzzer();
// setup TC3 timer
_tc3_initialize();
// TCC should run in standby mode
_tcc_write_RUNSTDBY(true);
// start the timer (for the 64 hz callback)
_tc3_start();
}
void cb_watch_buzzer_seq(void) {
// callback for reading the note sequence
if (_tone_ticks == 0) {
if (_sequence[_seq_position] < 0 && _sequence[_seq_position + 1]) {
// repeat indicator found
if (_repeat_counter == -1) {
// first encounter: load repeat counter
_repeat_counter = _sequence[_seq_position + 1];
} else _repeat_counter--;
if (_repeat_counter > 0)
// rewind
if (_seq_position > _sequence[_seq_position] * -2)
_seq_position += _sequence[_seq_position] * 2;
else
_seq_position = 0;
else {
// continue
_seq_position += 2;
_repeat_counter = -1;
}
}
if (_sequence[_seq_position] && _sequence[_seq_position + 1]) {
// read note
BuzzerNote note = _sequence[_seq_position];
if (note != BUZZER_NOTE_REST) {
watch_set_buzzer_period(NotePeriods[note]);
watch_set_buzzer_on();
} else watch_set_buzzer_off();
// set duration ticks and move to next tone
_tone_ticks = _sequence[_seq_position + 1];
_seq_position += 2;
} else {
// end the sequence
watch_buzzer_abort_sequence();
if (_cb_finished) _cb_finished();
}
} else _tone_ticks--;
}
void watch_buzzer_abort_sequence(void) {
// ends/aborts the sequence
if (_callback_running) _tc3_stop();
watch_set_buzzer_off();
// disable standby mode for TCC
_tcc_write_RUNSTDBY(false);
}
void TC3_Handler(void) {
// interrupt handler vor TC3 (globally!)
cb_watch_buzzer_seq();
TC3->COUNT8.INTFLAG.reg |= TC_INTFLAG_OVF;
bool watch_is_buzzer_or_led_enabled(void){
return tcc_is_enabled(0);
}
inline void watch_enable_buzzer(void) {
if (!hri_tcc_get_CTRLA_reg(TCC0, TCC_CTRLA_ENABLE)) {
if (!tcc_is_enabled(0)) {
_watch_enable_tcc();
}
}
inline void watch_set_buzzer_period(uint32_t period) {
hri_tcc_write_PERBUF_reg(TCC0, period);
hri_tcc_write_CCBUF_reg(TCC0, WATCH_BUZZER_TCC_CHANNEL, period / 2);
tcc_set_period(0, period, true);
tcc_set_cc(0, (WATCH_BUZZER_TCC_CHANNEL) % 4, period / 2, true);
}
void watch_disable_buzzer(void) {
@ -160,13 +49,13 @@ void watch_disable_buzzer(void) {
}
inline void watch_set_buzzer_on(void) {
gpio_set_pin_direction(BUZZER, GPIO_DIRECTION_OUT);
gpio_set_pin_function(BUZZER, WATCH_BUZZER_TCC_PINMUX);
HAL_GPIO_BUZZER_out();
HAL_GPIO_BUZZER_pmuxen(HAL_GPIO_PMUX_TCC_ALT);
}
inline void watch_set_buzzer_off(void) {
gpio_set_pin_direction(BUZZER, GPIO_DIRECTION_OFF);
gpio_set_pin_function(BUZZER, GPIO_PIN_FUNCTION_OFF);
HAL_GPIO_BUZZER_pmuxdis();
HAL_GPIO_BUZZER_off();
}
void watch_buzzer_play_note(BuzzerNote note, uint16_t duration_ms) {
@ -179,3 +68,74 @@ void watch_buzzer_play_note(BuzzerNote note, uint16_t duration_ms) {
delay_ms(duration_ms);
watch_set_buzzer_off();
}
void _watch_enable_tcc(void) {
// set up the TCC with a 1 MHz clock, but there's a trick:
if (USB->DEVICE.CTRLA.bit.ENABLE) {
// if USB is enabled, we are running an 8 MHz clock, so we divide by 8.
tcc_init(0, GENERIC_CLOCK_0, TCC_PRESCALER_DIV8);
} else {
// otherwise it's 4 Mhz and we divide by 4.
tcc_init(0, GENERIC_CLOCK_0, TCC_PRESCALER_DIV4);
}
// We're going to use normal PWM mode, which means period is controlled by PER, and duty cycle is controlled by
// each compare channel's value:
// * Buzzer tones are set by setting PER to the desired period for a given frequency, and CC[1] to half of that
// period (i.e. a square wave with a 50% duty cycle).
// * LEDs on CC[0] CC[2] and CC[3] can be set to any value from 0 (off) to PER (fully on).
tcc_set_wavegen(0, TCC_WAVEGEN_NORMAL_PWM);
#ifdef WATCH_INVERT_LED_POLARITY
// invert all channels, we'll flip the buzzer back in just a moment.
// this is easier than writing a maze of #ifdefs.
tcc_set_channel_polarity(0, 4, TCC_CHANNEL_POLARITY_INVERTED);
tcc_set_channel_polarity(0, 5, TCC_CHANNEL_POLARITY_INVERTED);
tcc_set_channel_polarity(0, 6, TCC_CHANNEL_POLARITY_INVERTED);
tcc_set_channel_polarity(0, 7, TCC_CHANNEL_POLARITY_INVERTED);
#endif // WATCH_INVERT_LED_POLARITY
tcc_set_channel_polarity(0, WATCH_BUZZER_TCC_CHANNEL, TCC_CHANNEL_POLARITY_NORMAL);
// Set the period to 1 kHz to start.
tcc_set_period(0, 1000, false);
// Set the duty cycle of all pins to 0: LED's off, buzzer not buzzing.
tcc_set_cc(0, (WATCH_BUZZER_TCC_CHANNEL) % 4, 0, false);
tcc_set_cc(0, (WATCH_RED_TCC_CHANNEL) % 4, 0, false);
#ifdef WATCH_GREEN_TCC_CHANNEL
tcc_set_cc(0, (WATCH_GREEN_TCC_CHANNEL) % 4, 0, false);
#endif
#ifdef WATCH_BLUE_TCC_CHANNEL
tcc_set_cc(0, (WATCH_BLUE_TCC_CHANNEL) % 4, 0, false);
#endif
// enable LED PWM pins (the LED driver assumes if the TCC is on, the pins are enabled)
HAL_GPIO_RED_pmuxen(HAL_GPIO_PMUX_TCC_ALT);
HAL_GPIO_RED_out();
#ifdef WATCH_GREEN_TCC_CHANNEL
HAL_GPIO_GREEN_pmuxen(HAL_GPIO_PMUX_TCC_ALT);
HAL_GPIO_GREEN_out();
#endif
#ifdef WATCH_BLUE_TCC_CHANNEL
HAL_GPIO_BLUE_pmuxen(HAL_GPIO_PMUX_TCC_ALT);
HAL_GPIO_BLUE_out();
#endif
// Enable the TCC
tcc_enable(0);
}
void _watch_disable_tcc(void) {
// disable all PWM pins
HAL_GPIO_BUZZER_pmuxdis();
HAL_GPIO_BUZZER_off();
HAL_GPIO_RED_pmuxdis();
HAL_GPIO_RED_off();
#ifdef WATCH_GREEN_TCC_CHANNEL
HAL_GPIO_GREEN_pmuxdis();
HAL_GPIO_GREEN_off();
#endif
#ifdef WATCH_BLUE_TCC_CHANNEL
HAL_GPIO_BLUE_pmuxdis();
HAL_GPIO_BLUE_off();
#endif
tcc_disable(0);
}

View File

@ -23,9 +23,13 @@
*/
#include "watch_led.h"
#include "watch_private.h"
#include "tcc.h"
void _watch_enable_tcc(void);
void watch_enable_leds(void) {
if (!hri_tcc_get_CTRLA_reg(TCC0, TCC_CTRLA_ENABLE)) {
if (!tcc_is_enabled(0)) {
_watch_enable_tcc();
}
}
@ -43,31 +47,34 @@ void watch_set_led_color(uint8_t red, uint8_t green) {
}
void watch_set_led_color_rgb(uint8_t red, uint8_t green, uint8_t blue) {
#ifndef WATCH_BLUE_TCC_CHANNEL
(void) blue; // silence warning
if (tcc_is_enabled(0)) {
uint32_t period = tcc_get_period(0);
tcc_set_cc(0, (WATCH_RED_TCC_CHANNEL) % 4, ((period * (uint32_t)red * 1000ull) / 255000ull), true);
#ifdef WATCH_GREEN_TCC_CHANNEL
tcc_set_cc(0, (WATCH_GREEN_TCC_CHANNEL) % 4, ((period * (uint32_t)green * 1000ull) / 255000ull), true);
#else
(void) green; // silence warning
#endif
if (hri_tcc_get_CTRLA_reg(TCC0, TCC_CTRLA_ENABLE)) {
uint32_t period = hri_tcc_get_PER_reg(TCC0, TCC_PER_MASK);
hri_tcc_write_CCBUF_reg(TCC0, WATCH_RED_TCC_CHANNEL, ((period * red * 1000ull) / 255000ull));
hri_tcc_write_CCBUF_reg(TCC0, WATCH_GREEN_TCC_CHANNEL, ((period * green * 1000ull) / 255000ull));
#ifdef WATCH_BLUE_TCC_CHANNEL
hri_tcc_write_CCBUF_reg(TCC0, WATCH_BLUE_TCC_CHANNEL, ((period * blue * 1000ull) / 255000ull));
tcc_set_cc(0, (WATCH_BLUE_TCC_CHANNEL) % 4, ((period * (uint32_t)blue * 1000ull) / 255000ull), true);
#else
(void) blue; // silence warning
#endif
}
}
void watch_set_led_red(void) {
watch_set_led_color(255, 0);
watch_set_led_color_rgb(255, 0, 0);
}
void watch_set_led_green(void) {
watch_set_led_color(0, 255);
watch_set_led_color_rgb(0, 255, 0);
}
void watch_set_led_yellow(void) {
watch_set_led_color(255, 255);
watch_set_led_color_rgb(255, 255, 0);
}
void watch_set_led_off(void) {
watch_set_led_color(0, 0);
watch_set_led_color_rgb(0, 0, 0);
}

View File

@ -133,81 +133,6 @@ void watch_disable_TRNG(void) {
hri_trng_write_CTRLA_reg(TRNG, 0);
}
void _watch_enable_tcc(void) {
// clock TCC0 with the main clock (8 MHz) and enable the peripheral clock.
hri_gclk_write_PCHCTRL_reg(GCLK, TCC0_GCLK_ID, GCLK_PCHCTRL_GEN_GCLK0_Val | GCLK_PCHCTRL_CHEN);
hri_mclk_set_APBCMASK_TCC0_bit(MCLK);
// disable and reset TCC0.
hri_tcc_clear_CTRLA_ENABLE_bit(TCC0);
hri_tcc_wait_for_sync(TCC0, TCC_SYNCBUSY_ENABLE);
hri_tcc_write_CTRLA_reg(TCC0, TCC_CTRLA_SWRST);
hri_tcc_wait_for_sync(TCC0, TCC_SYNCBUSY_SWRST);
// divide the clock down to 1 MHz
if (hri_usbdevice_get_CTRLA_ENABLE_bit(USB)) {
// if USB is enabled, we are running an 8 MHz clock.
hri_tcc_write_CTRLA_reg(TCC0, TCC_CTRLA_PRESCALER_DIV8);
} else {
// otherwise it's 4 Mhz.
hri_tcc_write_CTRLA_reg(TCC0, TCC_CTRLA_PRESCALER_DIV4);
}
// We're going to use normal PWM mode, which means period is controlled by PER, and duty cycle is controlled by
// each compare channel's value:
// * Buzzer tones are set by setting PER to the desired period for a given frequency, and CC[1] to half of that
// period (i.e. a square wave with a 50% duty cycle).
// * LEDs on CC[2] and CC[3] can be set to any value from 0 (off) to PER (fully on).
hri_tcc_write_WAVE_reg(TCC0, TCC_WAVE_WAVEGEN_NPWM);
#ifdef WATCH_INVERT_LED_POLARITY
// This is here for the dev board and Pro, which use a common anode LED (instead of common cathode like the actual watch).
hri_tcc_set_WAVE_reg(TCC0, (1 << (TCC_WAVE_POL0_Pos + WATCH_RED_TCC_CHANNEL)) |
#ifdef WATCH_BLUE_TCC_CHANNEL
(1 << (TCC_WAVE_POL0_Pos + WATCH_BLUE_TCC_CHANNEL)) |
#endif // WATCH_BLUE_TCC_CHANNEL
(1 << (TCC_WAVE_POL0_Pos + WATCH_GREEN_TCC_CHANNEL)));
#endif // WATCH_INVERT_LED_POLARITY
// The buzzer will set the period depending on the tone it wants to play, but we have to set some period here to
// get the LED working. Almost any period will do, tho it should be below 20000 (i.e. 50 Hz) to avoid flickering.
hri_tcc_write_PER_reg(TCC0, 1024);
// Set the duty cycle of all pins to 0: LED's off, buzzer not buzzing.
hri_tcc_write_CC_reg(TCC0, WATCH_BUZZER_TCC_CHANNEL, 0);
hri_tcc_write_CC_reg(TCC0, WATCH_RED_TCC_CHANNEL, 0);
hri_tcc_write_CC_reg(TCC0, WATCH_GREEN_TCC_CHANNEL, 0);
#ifdef WATCH_BLUE_TCC_CHANNEL
hri_tcc_write_CC_reg(TCC0, WATCH_BLUE_TCC_CHANNEL, 0);
#endif
// Enable the TCC
hri_tcc_set_CTRLA_ENABLE_bit(TCC0);
hri_tcc_wait_for_sync(TCC0, TCC_SYNCBUSY_ENABLE);
// enable LED PWM pins (the LED driver assumes if the TCC is on, the pins are enabled)
gpio_set_pin_direction(RED, GPIO_DIRECTION_OUT);
gpio_set_pin_function(RED, WATCH_RED_TCC_PINMUX);
gpio_set_pin_direction(GREEN, GPIO_DIRECTION_OUT);
gpio_set_pin_function(GREEN, WATCH_GREEN_TCC_PINMUX);
#ifdef WATCH_BLUE_TCC_CHANNEL
gpio_set_pin_direction(BLUE, GPIO_DIRECTION_OUT);
gpio_set_pin_function(BLUE, WATCH_BLUE_TCC_PINMUX);
#endif
}
void _watch_disable_tcc(void) {
// disable all PWM pins
gpio_set_pin_direction(BUZZER, GPIO_DIRECTION_OFF);
gpio_set_pin_function(BUZZER, GPIO_PIN_FUNCTION_OFF);
gpio_set_pin_direction(RED, GPIO_DIRECTION_OFF);
gpio_set_pin_function(RED, GPIO_PIN_FUNCTION_OFF);
gpio_set_pin_direction(GREEN, GPIO_DIRECTION_OFF);
gpio_set_pin_function(GREEN, GPIO_PIN_FUNCTION_OFF);
#ifdef WATCH_BLUE_TCC_CHANNEL
gpio_set_pin_direction(BLUE, GPIO_DIRECTION_OFF);
gpio_set_pin_function(BLUE, GPIO_PIN_FUNCTION_OFF);
#endif
// disable the TCC
hri_tcc_clear_CTRLA_ENABLE_bit(TCC0);
hri_mclk_clear_APBCMASK_TCC0_bit(MCLK);
}
void _watch_enable_tc0(void) {
// before we init TinyUSB, we are going to need a periodic callback to handle TinyUSB tasks.
// TC2 and TC3 are reserved for devices on the 9-pin connector, so let's use TC0.

View File

@ -60,8 +60,8 @@
// #include "watch_rtc.h"
// #include "watch_slcd.h"
// #include "watch_extint.h"
// #include "watch_led.h"
// #include "watch_buzzer.h"
#include "watch_led.h"
#include "watch_buzzer.h"
// #include "watch_adc.h"
#include "watch_gpio.h"
// #include "watch_i2c.h"
@ -72,13 +72,6 @@
// #include "watch_private.h"
/** @brief Returns true if either the buzzer or the LED driver is enabled.
* @details Both the buzzer and the LED use the TCC peripheral to drive their behavior. This function returns true if that
* peripheral is enabled. You can use this function to determine whether you need to call the watch_disable_leds or
* or watch_enable_buzzer functions before using these peripherals.
*/
bool watch_is_buzzer_or_led_enabled(void);
/** @brief Returns true if USB is enabled.
*/
bool watch_is_usb_enabled(void);

View File

@ -27,7 +27,14 @@
#include "watch.h"
/** @addtogroup buzzer Buzzer
/** @brief Returns true if either the buzzer or the LED driver is enabled.
* @details Both the buzzer and the LED use the TCC peripheral to drive their behavior. This function returns true if that
* peripheral is enabled. You can use this function to determine whether you need to call the watch_disable_leds or
* or watch_enable_buzzer functions before using these peripherals.
*/
bool watch_is_buzzer_or_led_enabled(void);
/** @addtogroup tcc Buzzer and LED Control (via the TCC peripheral)
* @brief This section covers functions related to the piezo buzzer embedded in the F-91W's back plate.
*/
/// @{

View File

@ -32,9 +32,6 @@ void _watch_init(void);
/// Initializes the real-time clock peripheral.
void _watch_rtc_init(void);
/// Called by buzzer and LED setup functions. You should not call this from your app.
void _watch_enable_tcc(void);
/// Called by buzzer and LED teardown functions. You should not call this from your app.
void _watch_disable_tcc(void);

View File

@ -40,6 +40,8 @@ static long _em_interval_id = 0;
static int8_t *_sequence;
static void (*_cb_finished)(void);
void _watch_enable_tcc(void) {}
static inline void _em_interval_stop() {
emscripten_clear_interval(_em_interval_id);
_em_interval_id = 0;

View File

@ -51,8 +51,6 @@ int _gettimeofday(struct timeval *tv, void *tzvp) {
return 0;
}
void _watch_enable_tcc(void) {}
void _watch_disable_tcc(void) {}
void _watch_enable_usb(void) {}