Compare commits
29 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
7e81200f80 | ||
|
|
b952fa07b5 | ||
|
|
15bd4335e8 | ||
|
|
d79a1236a0 | ||
|
|
ce11a308bf | ||
|
|
aa1fbcebe7 | ||
|
|
efbfb1e82a | ||
|
|
f497f1c5dc | ||
|
|
9ecf231307 | ||
|
|
66a9627b29 | ||
|
|
f03c01b6a6 | ||
|
|
29a5251d63 | ||
|
|
fcb956ff23 | ||
|
|
363fb882f3 | ||
|
|
e24cbb65b1 | ||
|
|
cf4d37a1c0 | ||
|
|
6394569b3b | ||
|
|
e6c855fcf9 | ||
|
|
c00061f46b | ||
|
|
67d572bd64 | ||
|
|
06769aba90 | ||
|
|
f5845e95e6 | ||
|
|
4d529619d6 | ||
|
|
95561f205c | ||
|
|
e855466280 | ||
|
|
c1c30c993c | ||
|
|
7da70097f2 | ||
|
|
01b6ae6bee | ||
|
|
9c1e0ea263 |
@@ -11,7 +11,8 @@
|
||||
"--device=all",
|
||||
"--socket=wayland",
|
||||
"--filesystem=/sys/module/amdgpu:ro",
|
||||
"--env=LD_LIBRARY_PATH=/app/lib:/usr/lib/x86_64-linux-gnu/GL/default/lib:/usr/lib/x86_64-linux-gnu/openh264/extra:/usr/lib/x86_64-linux-gnu/openh264/extra:/usr/lib/sdk/llvm15/lib:/usr/lib/x86_64-linux-gnu/GL/default/lib:/usr/lib/ollama:/app/plugins/AMD/lib/ollama"
|
||||
"--env=LD_LIBRARY_PATH=/app/lib:/usr/lib/x86_64-linux-gnu/GL/default/lib:/usr/lib/x86_64-linux-gnu/openh264/extra:/usr/lib/x86_64-linux-gnu/openh264/extra:/usr/lib/sdk/llvm15/lib:/usr/lib/x86_64-linux-gnu/GL/default/lib:/usr/lib/ollama:/app/plugins/AMD/lib/ollama",
|
||||
"--env=GSK_RENDERER=ngl"
|
||||
],
|
||||
"add-extensions": {
|
||||
"com.jeffser.Alpaca.Plugins": {
|
||||
@@ -134,16 +135,16 @@
|
||||
"sources": [
|
||||
{
|
||||
"type": "archive",
|
||||
"url": "https://github.com/ollama/ollama/releases/download/v0.3.11/ollama-linux-amd64.tgz",
|
||||
"sha256": "aa4d26889a6a413f676a7f80116983731f06287534bb72adec37dd39d168d40a",
|
||||
"url": "https://github.com/ollama/ollama/releases/download/v0.3.12/ollama-linux-amd64.tgz",
|
||||
"sha256": "f0efa42f7ad77cd156bd48c40cd22109473801e5113173b0ad04f094a4ef522b",
|
||||
"only-arches": [
|
||||
"x86_64"
|
||||
]
|
||||
},
|
||||
{
|
||||
"type": "archive",
|
||||
"url": "https://github.com/ollama/ollama/releases/download/v0.3.11/ollama-linux-arm64.tgz",
|
||||
"sha256": "61e3a21bec7f706b404424b80602240281d9b651ca4e00e8edee4527a533a15b",
|
||||
"url": "https://github.com/ollama/ollama/releases/download/v0.3.12/ollama-linux-arm64.tgz",
|
||||
"sha256": "da631cbe4dd2c168dae58d6868b1ff60e881e050f2d07578f2f736e689fec04c",
|
||||
"only-arches": [
|
||||
"aarch64"
|
||||
]
|
||||
@@ -166,6 +167,18 @@
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "vte",
|
||||
"buildsystem": "meson",
|
||||
"config-opts": ["-Dvapi=false"],
|
||||
"sources": [
|
||||
{
|
||||
"type": "archive",
|
||||
"url": "https://gitlab.gnome.org/GNOME/vte/-/archive/0.78.0/vte-0.78.0.tar.gz",
|
||||
"sha256": "82e19d11780fed4b66400f000829ce5ca113efbbfb7975815f26ed93e4c05f2d"
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"name" : "alpaca",
|
||||
"builddir" : true,
|
||||
|
||||
@@ -78,6 +78,23 @@
|
||||
<url type="contribute">https://github.com/Jeffser/Alpaca/discussions/154</url>
|
||||
<url type="vcs-browser">https://github.com/Jeffser/Alpaca</url>
|
||||
<releases>
|
||||
<release version="2.5.0" date="2024-10-06">
|
||||
<url type="details">https://github.com/Jeffser/Alpaca/releases/tag/2.5.0</url>
|
||||
<description>
|
||||
<p>New</p>
|
||||
<ul>
|
||||
<li>Run bash and python scripts straight from chat</li>
|
||||
<li>Updated Ollama to 0.3.12</li>
|
||||
<li>New models!</li>
|
||||
</ul>
|
||||
<p>Fixes</p>
|
||||
<ul>
|
||||
<li>Fixed and made faster the launch sequence</li>
|
||||
<li>Better detection of code blocks in messages</li>
|
||||
<li>Fixed app not loading in certain setups with Nvidia GPUs</li>
|
||||
</ul>
|
||||
</description>
|
||||
</release>
|
||||
<release version="2.0.6" date="2024-09-29">
|
||||
<url type="details">https://github.com/Jeffser/Alpaca/releases/tag/2.0.6</url>
|
||||
<description>
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
project('Alpaca', 'c',
|
||||
version: '2.0.6',
|
||||
version: '2.5.0',
|
||||
meson_version: '>= 0.62.0',
|
||||
default_options: [ 'warning_level=2', 'werror=false', ],
|
||||
)
|
||||
|
||||
1828
po/alpaca.pot
1828
po/alpaca.pot
File diff suppressed because it is too large
Load Diff
1881
po/nb_NO.po
1881
po/nb_NO.po
File diff suppressed because it is too large
Load Diff
1828
po/pt_BR.po
1828
po/pt_BR.po
File diff suppressed because it is too large
Load Diff
1962
po/zh_Hans.po
1962
po/zh_Hans.po
File diff suppressed because it is too large
Load Diff
@@ -31,6 +31,7 @@
|
||||
<file alias="icons/scalable/status/update-symbolic.svg">icons/update-symbolic.svg</file>
|
||||
<file alias="icons/scalable/status/down-symbolic.svg">icons/down-symbolic.svg</file>
|
||||
<file alias="icons/scalable/status/chat-bubble-text-symbolic.svg">icons/chat-bubble-text-symbolic.svg</file>
|
||||
<file alias="icons/scalable/status/execute-from-symbolic.svg">icons/execute-from-symbolic.svg</file>
|
||||
<file preprocess="xml-stripblanks">window.ui</file>
|
||||
<file preprocess="xml-stripblanks">gtk/help-overlay.ui</file>
|
||||
</gresource>
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1,4 +1,5 @@
|
||||
descriptions = {
|
||||
'llama3.2': _("Meta's Llama 3.2 goes small with 1B and 3B models."),
|
||||
'llama3.1': _("Llama 3.1 is a new state-of-the-art model from Meta available in 8B, 70B and 405B parameter sizes."),
|
||||
'gemma2': _("Google Gemma 2 is a high-performing and efficient model available in three sizes: 2B, 9B, and 27B."),
|
||||
'qwen2.5': _("Qwen2.5 models are pretrained on Alibaba's latest large-scale dataset, encompassing up to 18 trillion tokens. The model supports up to 128K tokens and has multilingual support."),
|
||||
@@ -21,87 +22,88 @@ descriptions = {
|
||||
'llama2': _("Llama 2 is a collection of foundation language models ranging from 7B to 70B parameters."),
|
||||
'codellama': _("A large language model that can use text prompts to generate and discuss code."),
|
||||
'nomic-embed-text': _("A high-performing open embedding model with a large token context window."),
|
||||
'mxbai-embed-large': _("State-of-the-art large embedding model from mixedbread.ai"),
|
||||
'dolphin-mixtral': _("Uncensored, 8x7b and 8x22b fine-tuned models based on the Mixtral mixture of experts models that excels at coding tasks. Created by Eric Hartford."),
|
||||
'phi': _("Phi-2: a 2.7B language model by Microsoft Research that demonstrates outstanding reasoning and language understanding capabilities."),
|
||||
'llama2-uncensored': _("Uncensored Llama 2 model by George Sung and Jarrad Hope."),
|
||||
'deepseek-coder': _("DeepSeek Coder is a capable coding model trained on two trillion code and natural language tokens."),
|
||||
'mxbai-embed-large': _("State-of-the-art large embedding model from mixedbread.ai"),
|
||||
'starcoder2': _("StarCoder2 is the next generation of transparently trained open code LLMs that comes in three sizes: 3B, 7B and 15B parameters."),
|
||||
'llama2-uncensored': _("Uncensored Llama 2 model by George Sung and Jarrad Hope."),
|
||||
'dolphin-mistral': _("The uncensored Dolphin model based on Mistral that excels at coding tasks. Updated to version 2.8."),
|
||||
'zephyr': _("Zephyr is a series of fine-tuned versions of the Mistral and Mixtral models that are trained to act as helpful assistants."),
|
||||
'yi': _("Yi 1.5 is a high-performing, bilingual language model."),
|
||||
'dolphin-llama3': _("Dolphin 2.9 is a new model with 8B and 70B sizes by Eric Hartford based on Llama 3 that has a variety of instruction, conversational, and coding skills."),
|
||||
'orca-mini': _("A general-purpose model ranging from 3 billion parameters to 70 billion, suitable for entry-level hardware."),
|
||||
'yi': _("Yi 1.5 is a high-performing, bilingual language model."),
|
||||
'llava-llama3': _("A LLaVA model fine-tuned from Llama 3 Instruct with better scores in several benchmarks."),
|
||||
'qwen2.5-coder': _("The latest series of Code-Specific Qwen models, with significant improvements in code generation, code reasoning, and code fixing."),
|
||||
'mistral-openorca': _("Mistral OpenOrca is a 7 billion parameter model, fine-tuned on top of the Mistral 7B model using the OpenOrca dataset."),
|
||||
'starcoder': _("StarCoder is a code generation model trained on 80+ programming languages."),
|
||||
'tinyllama': _("The TinyLlama project is an open endeavor to train a compact 1.1B Llama model on 3 trillion tokens."),
|
||||
'vicuna': _("General use chat model based on Llama and Llama 2 with 2K to 16K context sizes."),
|
||||
'codestral': _("Codestral is Mistral AI’s first-ever code model designed for code generation tasks."),
|
||||
'vicuna': _("General use chat model based on Llama and Llama 2 with 2K to 16K context sizes."),
|
||||
'llama2-chinese': _("Llama 2 based model fine tuned to improve Chinese dialogue ability."),
|
||||
'snowflake-arctic-embed': _("A suite of text embedding models by Snowflake, optimized for performance."),
|
||||
'wizard-vicuna-uncensored': _("Wizard Vicuna Uncensored is a 7B, 13B, and 30B parameter model based on Llama 2 uncensored by Eric Hartford."),
|
||||
'granite-code': _("A family of open foundation models by IBM for Code Intelligence"),
|
||||
'codegeex4': _("A versatile model for AI software development scenarios, including code completion."),
|
||||
'nous-hermes2': _("The powerful family of models by Nous Research that excels at scientific discussion and coding tasks."),
|
||||
'granite-code': _("A family of open foundation models by IBM for Code Intelligence"),
|
||||
'all-minilm': _("Embedding models on very large sentence level datasets."),
|
||||
'openchat': _("A family of open-source models trained on a wide variety of data, surpassing ChatGPT on various benchmarks. Updated to version 3.5-0106."),
|
||||
'aya': _("Aya 23, released by Cohere, is a new family of state-of-the-art, multilingual models that support 23 languages."),
|
||||
'wizardlm2': _("State of the art large language model from Microsoft AI with improved performance on complex chat, multilingual, reasoning and agent use cases."),
|
||||
'codeqwen': _("CodeQwen1.5 is a large language model pretrained on a large amount of code data."),
|
||||
'wizardlm2': _("State of the art large language model from Microsoft AI with improved performance on complex chat, multilingual, reasoning and agent use cases."),
|
||||
'tinydolphin': _("An experimental 1.1B parameter model trained on the new Dolphin 2.8 dataset by Eric Hartford and based on TinyLlama."),
|
||||
'all-minilm': _("Embedding models on very large sentence level datasets."),
|
||||
'wizardcoder': _("State-of-the-art code generation model"),
|
||||
'stable-code': _("Stable Code 3B is a coding model with instruct and code completion variants on par with models such as Code Llama 7B that are 2.5x larger."),
|
||||
'openhermes': _("OpenHermes 2.5 is a 7B model fine-tuned by Teknium on Mistral with fully open datasets."),
|
||||
'qwen2-math': _("Qwen2 Math is a series of specialized math language models built upon the Qwen2 LLMs, which significantly outperforms the mathematical capabilities of open-source models and even closed-source models (e.g., GPT4o)."),
|
||||
'bakllava': _("BakLLaVA is a multimodal model consisting of the Mistral 7B base model augmented with the LLaVA architecture."),
|
||||
'stablelm2': _("Stable LM 2 is a state-of-the-art 1.6B and 12B parameter language model trained on multilingual data in English, Spanish, German, Italian, French, Portuguese, and Dutch."),
|
||||
'qwen2-math': _("Qwen2 Math is a series of specialized math language models built upon the Qwen2 LLMs, which significantly outperforms the mathematical capabilities of open-source models and even closed-source models (e.g., GPT4o)."),
|
||||
'wizard-math': _("Model focused on math and logic problems"),
|
||||
'llama3-gradient': _("This model extends LLama-3 8B's context length from 8k to over 1m tokens."),
|
||||
'neural-chat': _("A fine-tuned model based on Mistral with good coverage of domain and language."),
|
||||
'deepseek-llm': _("An advanced language model crafted with 2 trillion bilingual tokens."),
|
||||
'wizard-math': _("Model focused on math and logic problems"),
|
||||
'glm4': _("A strong multi-lingual general language model with competitive performance to Llama 3."),
|
||||
'neural-chat': _("A fine-tuned model based on Mistral with good coverage of domain and language."),
|
||||
'reflection': _("A high-performing model trained with a new technique called Reflection-tuning that teaches a LLM to detect mistakes in its reasoning and correct course."),
|
||||
'llama3-chatqa': _("A model from NVIDIA based on Llama 3 that excels at conversational question answering (QA) and retrieval-augmented generation (RAG)."),
|
||||
'mistral-large': _("Mistral Large 2 is Mistral's new flagship model that is significantly more capable in code generation, mathematics, and reasoning with 128k context window and support for dozens of languages."),
|
||||
'moondream': _("moondream2 is a small vision language model designed to run efficiently on edge devices."),
|
||||
'xwinlm': _("Conversational model based on Llama 2 that performs competitively on various benchmarks."),
|
||||
'phind-codellama': _("Code generation model based on Code Llama."),
|
||||
'nous-hermes': _("General use models based on Llama and Llama 2 from Nous Research."),
|
||||
'xwinlm': _("Conversational model based on Llama 2 that performs competitively on various benchmarks."),
|
||||
'sqlcoder': _("SQLCoder is a code completion model fined-tuned on StarCoder for SQL generation tasks"),
|
||||
'dolphincoder': _("A 7B and 15B uncensored variant of the Dolphin model family that excels at coding, based on StarCoder2."),
|
||||
'llama3-chatqa': _("A model from NVIDIA based on Llama 3 that excels at conversational question answering (QA) and retrieval-augmented generation (RAG)."),
|
||||
'yarn-llama2': _("An extension of Llama 2 that supports a context of up to 128k tokens."),
|
||||
'mistral-large': _("Mistral Large 2 is Mistral's new flagship model that is significantly more capable in code generation, mathematics, and reasoning with 128k context window and support for dozens of languages."),
|
||||
'wizardlm': _("General use model based on Llama 2."),
|
||||
'smollm': _("🪐 A family of small models with 135M, 360M, and 1.7B parameters, trained on a new high-quality dataset."),
|
||||
'wizardlm': _("General use model based on Llama 2."),
|
||||
'deepseek-v2': _("A strong, economical, and efficient Mixture-of-Experts language model."),
|
||||
'starling-lm': _("Starling is a large language model trained by reinforcement learning from AI feedback focused on improving chatbot helpfulness."),
|
||||
'reflection': _("A high-performing model trained with a new technique called Reflection-tuning that teaches a LLM to detect mistakes in its reasoning and correct course."),
|
||||
'moondream': _("moondream2 is a small vision language model designed to run efficiently on edge devices."),
|
||||
'snowflake-arctic-embed': _("A suite of text embedding models by Snowflake, optimized for performance."),
|
||||
'samantha-mistral': _("A companion assistant trained in philosophy, psychology, and personal relationships. Based on Mistral."),
|
||||
'solar': _("A compact, yet powerful 10.7B large language model designed for single-turn conversation."),
|
||||
'orca2': _("Orca 2 is built by Microsoft research, and are a fine-tuned version of Meta's Llama 2 models. The model is designed to excel particularly in reasoning."),
|
||||
'deepseek-v2': _("A strong, economical, and efficient Mixture-of-Experts language model."),
|
||||
'stable-beluga': _("Llama 2 based model fine tuned on an Orca-style dataset. Originally called Free Willy."),
|
||||
'glm4': _("A strong multi-lingual general language model with competitive performance to Llama 3."),
|
||||
'dolphin-phi': _("2.7B uncensored Dolphin model by Eric Hartford, based on the Phi language model by Microsoft Research."),
|
||||
'wizardlm-uncensored': _("Uncensored version of Wizard LM model"),
|
||||
'llava-phi3': _("A new small LLaVA model fine-tuned from Phi 3 Mini."),
|
||||
'hermes3': _("Hermes 3 is the latest version of the flagship Hermes series of LLMs by Nous Research"),
|
||||
'yi-coder': _("Yi-Coder is a series of open-source code language models that delivers state-of-the-art coding performance with fewer than 10 billion parameters."),
|
||||
'llava-phi3': _("A new small LLaVA model fine-tuned from Phi 3 Mini."),
|
||||
'internlm2': _("InternLM2.5 is a 7B parameter model tailored for practical scenarios with outstanding reasoning capability."),
|
||||
'yarn-mistral': _("An extension of Mistral to support context windows of 64K or 128K."),
|
||||
'llama-pro': _("An expansion of Llama 2 that specializes in integrating both general language understanding and domain-specific knowledge, particularly in programming and mathematics."),
|
||||
'medllama2': _("Fine-tuned Llama 2 model to answer medical questions based on an open source medical dataset."),
|
||||
'yi-coder': _("Yi-Coder is a series of open-source code language models that delivers state-of-the-art coding performance with fewer than 10 billion parameters."),
|
||||
'internlm2': _("InternLM2.5 is a 7B parameter model tailored for practical scenarios with outstanding reasoning capability."),
|
||||
'meditron': _("Open-source medical large language model adapted from Llama 2 to the medical domain."),
|
||||
'nexusraven': _("Nexus Raven is a 13B instruction tuned model for function calling tasks."),
|
||||
'nous-hermes2-mixtral': _("The Nous Hermes 2 model from Nous Research, now trained over Mixtral."),
|
||||
'codeup': _("Great code generation model based on Llama2."),
|
||||
'everythinglm': _("Uncensored Llama2 based model with support for a 16K context window."),
|
||||
'llama3-groq-tool-use': _("A series of models from Groq that represent a significant advancement in open-source AI capabilities for tool use/function calling."),
|
||||
'everythinglm': _("Uncensored Llama2 based model with support for a 16K context window."),
|
||||
'magicoder': _("🎩 Magicoder is a family of 7B parameter models trained on 75K synthetic instruction data using OSS-Instruct, a novel approach to enlightening LLMs with open-source code snippets."),
|
||||
'stablelm-zephyr': _("A lightweight chat model allowing accurate, and responsive output without requiring high-end hardware."),
|
||||
'codebooga': _("A high-performing code instruct model created by merging two existing code models."),
|
||||
'wizard-vicuna': _("Wizard Vicuna is a 13B parameter model based on Llama 2 trained by MelodysDreamj."),
|
||||
'mistrallite': _("MistralLite is a fine-tuned model based on Mistral with enhanced capabilities of processing long contexts."),
|
||||
'falcon2': _("Falcon2 is an 11B parameters causal decoder-only model built by TII and trained over 5T tokens."),
|
||||
'wizard-vicuna': _("Wizard Vicuna is a 13B parameter model based on Llama 2 trained by MelodysDreamj."),
|
||||
'duckdb-nsql': _("7B parameter text-to-SQL model made by MotherDuck and Numbers Station."),
|
||||
'qwen2.5-coder': _("The latest series of Code-Specific Qwen models, with significant improvements in code generation, code reasoning, and code fixing."),
|
||||
'minicpm-v': _("A series of multimodal LLMs (MLLMs) designed for vision-language understanding."),
|
||||
'megadolphin': _("MegaDolphin-2.2-120b is a transformation of Dolphin-2.2-70b created by interleaving the model with itself."),
|
||||
'notux': _("A top-performing mixture of experts model, fine-tuned with high-quality data."),
|
||||
'goliath': _("A language model created by combining two fine-tuned Llama 2 70B models into one."),
|
||||
@@ -110,14 +112,13 @@ descriptions = {
|
||||
'bge-m3': _("BGE-M3 is a new model from BAAI distinguished for its versatility in Multi-Functionality, Multi-Linguality, and Multi-Granularity."),
|
||||
'mathstral': _("MathΣtral: a 7B model designed for math reasoning and scientific discovery by Mistral AI."),
|
||||
'dbrx': _("DBRX is an open, general-purpose LLM created by Databricks."),
|
||||
'minicpm-v': _("A series of multimodal LLMs (MLLMs) designed for vision-language understanding."),
|
||||
'solar-pro': _("Solar Pro Preview: an advanced large language model (LLM) with 22 billion parameters designed to fit into a single GPU"),
|
||||
'nuextract': _("A 3.8B model fine-tuned on a private high-quality synthetic dataset for information extraction, based on Phi-3."),
|
||||
'alfred': _("A robust conversational model designed to be used for both chat and instruct use cases."),
|
||||
'firefunction-v2': _("An open weights function calling model based on Llama 3, competitive with GPT-4o function calling capabilities."),
|
||||
'solar-pro': _("Solar Pro Preview: an advanced large language model (LLM) with 22 billion parameters designed to fit into a single GPU"),
|
||||
'bge-large': _("Embedding model from BAAI mapping texts to vectors."),
|
||||
'reader-lm': _("A series of models that convert HTML content to Markdown content, which is useful for content conversion tasks."),
|
||||
'bge-large': _("Embedding model from BAAI mapping texts to vectors."),
|
||||
'deepseek-v2.5': _("An upgraded version of DeekSeek-V2 that integrates the general and coding abilities of both DeepSeek-V2-Chat and DeepSeek-Coder-V2-Instruct."),
|
||||
'paraphrase-multilingual': _("Sentence-transformers model that can be used for tasks like clustering or semantic search."),
|
||||
'bespoke-minicheck': _("A state-of-the-art fact-checking model developed by Bespoke Labs."),
|
||||
'paraphrase-multilingual': _("Sentence-transformers model that can be used for tasks like clustering or semantic search."),
|
||||
}
|
||||
@@ -6,7 +6,7 @@ Handles the chat widget (testing)
|
||||
import gi
|
||||
gi.require_version('Gtk', '4.0')
|
||||
gi.require_version('GtkSource', '5')
|
||||
from gi.repository import Gtk, Gio, Adw, Gdk
|
||||
from gi.repository import Gtk, Gio, Adw, Gdk, GLib
|
||||
import logging, os, datetime, shutil, random, tempfile, tarfile, json
|
||||
from ..internal import data_dir
|
||||
from .message_widget import message
|
||||
@@ -154,8 +154,8 @@ class chat(Gtk.ScrolledWindow):
|
||||
for file_name, file_type in message_data['files'].items():
|
||||
files[os.path.join(data_dir, "chats", self.get_name(), message_id, file_name)] = file_type
|
||||
message_element.add_attachments(files)
|
||||
message_element.set_text(message_data['content'])
|
||||
message_element.add_footer(datetime.datetime.strptime(message_data['date'] + (":00" if message_data['date'].count(":") == 1 else ""), '%Y/%m/%d %H:%M:%S'))
|
||||
GLib.idle_add(message_element.set_text, message_data['content'])
|
||||
GLib.idle_add(message_element.add_footer, datetime.datetime.strptime(message_data['date'] + (":00" if message_data['date'].count(":") == 1 else ""), '%Y/%m/%d %H:%M:%S'))
|
||||
else:
|
||||
self.show_welcome_screen(len(window.model_manager.get_model_list()) > 0)
|
||||
|
||||
|
||||
@@ -10,6 +10,7 @@ from gi.repository import Gtk, GObject, Gio, Adw, GtkSource, GLib, Gdk
|
||||
import logging, os, datetime, re, shutil, threading, sys
|
||||
from ..internal import config_dir, data_dir, cache_dir, source_dir
|
||||
from .table_widget import TableWidget
|
||||
from .. import dialogs
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -103,10 +104,14 @@ class code_block(Gtk.Box):
|
||||
self.source_view.update_property([4], [_("{}Code Block").format('{} '.format(self.language.get_name()) if self.language else "")])
|
||||
|
||||
title_box = Gtk.Box(margin_start=12, margin_top=3, margin_bottom=3, margin_end=3)
|
||||
title_box.append(Gtk.Label(label=self.language.get_name() if self.language else _("Code Block"), hexpand=True, xalign=0))
|
||||
title_box.append(Gtk.Label(label=self.language.get_name() if self.language else (language_name.title() if language_name else _("Code Block")), hexpand=True, xalign=0))
|
||||
copy_button = Gtk.Button(icon_name="edit-copy-symbolic", css_classes=["flat", "circular"], tooltip_text=_("Copy Message"))
|
||||
copy_button.connect("clicked", lambda *_: self.on_copy())
|
||||
title_box.append(copy_button)
|
||||
if language_name and language_name.lower() in ['bash', 'python3']:
|
||||
run_button = Gtk.Button(icon_name="execute-from-symbolic", css_classes=["flat", "circular"], tooltip_text=_("Run Script"))
|
||||
run_button.connect("clicked", lambda *_: self.run_script(language_name))
|
||||
title_box.append(run_button)
|
||||
self.append(title_box)
|
||||
self.append(Gtk.Separator())
|
||||
self.append(self.source_view)
|
||||
@@ -121,6 +126,12 @@ class code_block(Gtk.Box):
|
||||
clipboard.set(text)
|
||||
window.show_toast(_("Code copied to the clipboard"), window.main_overlay)
|
||||
|
||||
def run_script(self, language_name):
|
||||
logger.debug("Running script")
|
||||
start = self.buffer.get_start_iter()
|
||||
end = self.buffer.get_end_iter()
|
||||
dialogs.run_script(window, self.buffer.get_text(start, end, False), language_name)
|
||||
|
||||
class attachment(Gtk.Button):
|
||||
__gtype_name__ = 'AlpacaAttachment'
|
||||
|
||||
@@ -473,8 +484,7 @@ class message(Gtk.Overlay):
|
||||
self.content_children = []
|
||||
if text:
|
||||
self.content_children = []
|
||||
code_block_pattern = re.compile(r'```(\w+)\n(.*?)\n```', re.DOTALL)
|
||||
no_lang_code_block_pattern = re.compile(r'`\n(.*?)\n`', re.DOTALL)
|
||||
code_block_pattern = re.compile(r'[```|`](\w*)\n(.*?)\n\s*[```|`]', re.DOTALL)
|
||||
table_pattern = re.compile(r'((\r?\n){2}|^)([^\r\n]*\|[^\r\n]*(\r?\n)?)+(?=(\r?\n){2}|$)', re.MULTILINE)
|
||||
bold_pattern = re.compile(r'\*\*(.*?)\*\*') #"**text**"
|
||||
code_pattern = re.compile(r'`([^`\n]*?)`') #"`text`"
|
||||
@@ -493,15 +503,6 @@ class message(Gtk.Overlay):
|
||||
code_text = match.group(2)
|
||||
parts.append({"type": "code", "text": code_text, "language": 'python3' if language == 'python' else language})
|
||||
pos = end
|
||||
# Code blocks (No language)
|
||||
for match in no_lang_code_block_pattern.finditer(self.text):
|
||||
start, end = match.span()
|
||||
if pos < start:
|
||||
normal_text = self.text[pos:start]
|
||||
parts.append({"type": "normal", "text": normal_text.strip()})
|
||||
code_text = match.group(1)
|
||||
parts.append({"type": "code", "text": code_text, "language": None})
|
||||
pos = end
|
||||
# Tables
|
||||
for match in table_pattern.finditer(self.text):
|
||||
start, end = match.span()
|
||||
|
||||
49
src/custom_widgets/terminal_widget.py
Normal file
49
src/custom_widgets/terminal_widget.py
Normal file
@@ -0,0 +1,49 @@
|
||||
#chat_widget.py
|
||||
"""
|
||||
Handles the terminal widget
|
||||
"""
|
||||
|
||||
import gi
|
||||
gi.require_version('Gtk', '4.0')
|
||||
gi.require_version('Vte', '3.91')
|
||||
from gi.repository import Gtk, Vte, GLib, Pango, GLib, Gdk
|
||||
|
||||
class terminal(Vte.Terminal):
|
||||
__gtype_name__ = 'AlpacaTerminal'
|
||||
|
||||
def __init__(self, script:list):
|
||||
super().__init__(css_classes=["terminal"])
|
||||
self.set_font(Pango.FontDescription.from_string("Monospace 12"))
|
||||
self.set_clear_background(False)
|
||||
pty = Vte.Pty.new_sync(Vte.PtyFlags.DEFAULT, None)
|
||||
|
||||
self.set_pty(pty)
|
||||
|
||||
env = {
|
||||
'TERM': "xterm-256color",
|
||||
'SUDO_ASKPASS': "sh -c 'pkexec echo'"
|
||||
}
|
||||
|
||||
pty.spawn_async(
|
||||
GLib.get_current_dir(),
|
||||
script,
|
||||
[],
|
||||
GLib.SpawnFlags.DEFAULT,
|
||||
None,
|
||||
None,
|
||||
-1,
|
||||
None,
|
||||
None
|
||||
)
|
||||
|
||||
key_controller = Gtk.EventControllerKey()
|
||||
key_controller.connect("key-pressed", self.on_key_press)
|
||||
self.add_controller(key_controller)
|
||||
|
||||
def on_key_press(self, controller, keyval, keycode, state):
|
||||
ctrl = state & Gdk.ModifierType.CONTROL_MASK
|
||||
shift = state & Gdk.ModifierType.SHIFT_MASK
|
||||
if ctrl and keyval == Gdk.KEY_c:
|
||||
self.copy_clipboard()
|
||||
return True
|
||||
return False
|
||||
@@ -3,11 +3,11 @@
|
||||
Handles UI dialogs
|
||||
"""
|
||||
import os
|
||||
import logging, requests, threading, shutil
|
||||
import logging, requests, threading, shutil, subprocess, re
|
||||
from pytube import YouTube
|
||||
from html2text import html2text
|
||||
from gi.repository import Adw, Gtk
|
||||
from .internal import cache_dir
|
||||
from .internal import cache_dir, data_dir
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
# CLEAR CHAT | WORKS
|
||||
@@ -416,3 +416,59 @@ def attach_website(self, url):
|
||||
cancellable = None,
|
||||
callback = lambda dialog, task, url=url: attach_website_response(self, dialog, task, url)
|
||||
)
|
||||
|
||||
# Run Script
|
||||
|
||||
def run_script_response(self, dialog, task, script, language_name):
|
||||
if dialog.choose_finish(task) == "accept":
|
||||
logger.info('Running: \n{}'.format(script))
|
||||
if language_name == 'python3':
|
||||
if not os.path.isdir(os.path.join(data_dir, 'pyenv')):
|
||||
os.mkdir(os.path.join(data_dir, 'pyenv'))
|
||||
with open(os.path.join(data_dir, 'pyenv', 'main.py'), 'w') as f:
|
||||
f.write(script)
|
||||
script = [
|
||||
'echo "🐍 {}\n"'.format(_('Setting up Python environment...')),
|
||||
'python3 -m venv "{}"'.format(os.path.join(data_dir, 'pyenv')),
|
||||
'{} {}'.format(os.path.join(data_dir, 'pyenv', 'bin', 'python3').replace(' ', '\\ '), os.path.join(data_dir, 'pyenv', 'main.py').replace(' ', '\\ '))
|
||||
]
|
||||
if os.path.isfile(os.path.join(data_dir, 'pyenv', 'requirements.txt')):
|
||||
script.insert(1, '{} install -r {} | grep -v "already satisfied"; clear'.format(os.path.join(data_dir, 'pyenv', 'bin', 'pip3'), os.path.join(data_dir, 'pyenv', 'requirements.txt')))
|
||||
else:
|
||||
with open(os.path.join(data_dir, 'pyenv', 'requirements.txt'), 'w') as f:
|
||||
f.write('')
|
||||
script = ';\n'.join(script)
|
||||
|
||||
script += '; echo "\n🦙 {}"'.format(_('Script exited'))
|
||||
if language_name == 'bash':
|
||||
script = re.sub(r'(?m)^\s*sudo', 'pkexec', script)
|
||||
if shutil.which('flatpak-spawn') and language_name == 'bash':
|
||||
sandbox = True
|
||||
try:
|
||||
process = subprocess.run(['flatpak-spawn', '--host', 'bash', '-c', 'echo "test"'], check=True)
|
||||
sandbox = False
|
||||
except Exception as e:
|
||||
pass
|
||||
if sandbox:
|
||||
script = 'echo "🦙 {}\n";'.format(_('The script is contained inside Flatpak')) + script
|
||||
self.run_terminal(['bash', '-c', script])
|
||||
else:
|
||||
self.run_terminal(['flatpak-spawn', '--host', 'bash', '-c', script])
|
||||
else:
|
||||
self.run_terminal(['bash', '-c', script])
|
||||
|
||||
def run_script(self, script:str, language_name:str):
|
||||
dialog = Adw.AlertDialog(
|
||||
heading=_("Run Script"),
|
||||
body=_("Make sure you understand what this script does before running it, Alpaca is not responsible for any damages to your device or data"),
|
||||
close_response="cancel"
|
||||
)
|
||||
dialog.add_response("cancel", _("Cancel"))
|
||||
dialog.add_response("accept", _("Accept"))
|
||||
dialog.set_response_appearance("accept", Adw.ResponseAppearance.SUGGESTED)
|
||||
dialog.set_default_response("accept")
|
||||
dialog.choose(
|
||||
parent = self,
|
||||
cancellable = None,
|
||||
callback = lambda dialog, task, script=script, language_name=language_name: run_script_response(self, dialog, task, script, language_name)
|
||||
)
|
||||
|
||||
2
src/icons/execute-from-symbolic.svg
Normal file
2
src/icons/execute-from-symbolic.svg
Normal file
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<svg xmlns="http://www.w3.org/2000/svg" height="16px" viewBox="0 0 16 16" width="16px"><path d="m 4.992188 2.996094 v 10 h 1 c 0.175781 0 0.347656 -0.039063 0.5 -0.125 l 7 -4 c 0.308593 -0.171875 0.46875 -0.523438 0.46875 -0.875 c 0 -0.351563 -0.160157 -0.703125 -0.46875 -0.875 l -7 -4 c -0.152344 -0.085938 -0.324219 -0.125 -0.5 -0.125 z m 0 0" fill="#222222"/></svg>
|
||||
|
After Width: | Height: | Size: 409 B |
@@ -50,7 +50,8 @@ custom_widgets = [
|
||||
'custom_widgets/table_widget.py',
|
||||
'custom_widgets/message_widget.py',
|
||||
'custom_widgets/chat_widget.py',
|
||||
'custom_widgets/model_widget.py'
|
||||
'custom_widgets/model_widget.py',
|
||||
'custom_widgets/terminal_widget.py'
|
||||
]
|
||||
|
||||
install_data(alpaca_sources, install_dir: moduledir)
|
||||
|
||||
@@ -36,4 +36,7 @@ stacksidebar {
|
||||
}
|
||||
.code_block {
|
||||
font-family: monospace;
|
||||
}
|
||||
}
|
||||
.terminal {
|
||||
padding: 10px;
|
||||
}
|
||||
|
||||
@@ -32,7 +32,7 @@ gi.require_version('GdkPixbuf', '2.0')
|
||||
from gi.repository import Adw, Gtk, Gdk, GLib, GtkSource, Gio, GdkPixbuf
|
||||
|
||||
from . import dialogs, connection_handler
|
||||
from .custom_widgets import message_widget, chat_widget, model_widget
|
||||
from .custom_widgets import message_widget, chat_widget, model_widget, terminal_widget
|
||||
from .internal import config_dir, data_dir, cache_dir, source_dir
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -118,6 +118,9 @@ class AlpacaWindow(Adw.ApplicationWindow):
|
||||
|
||||
style_manager = Adw.StyleManager()
|
||||
|
||||
terminal_scroller = Gtk.Template.Child()
|
||||
terminal_dialog = Gtk.Template.Child()
|
||||
|
||||
@Gtk.Template.Callback()
|
||||
def stop_message(self, button=None):
|
||||
self.chat_list_box.get_current_chat().stop_message()
|
||||
@@ -351,14 +354,15 @@ class AlpacaWindow(Adw.ApplicationWindow):
|
||||
current_chat = self.chat_list_box.get_current_chat()
|
||||
if current_chat:
|
||||
for key, message in current_chat.messages.items():
|
||||
message.set_visible(re.search(search_term, message.text, re.IGNORECASE))
|
||||
for block in message.content_children:
|
||||
if isinstance(block, message_widget.text_block):
|
||||
if search_term:
|
||||
highlighted_text = re.sub(f"({re.escape(search_term)})", r"<span background='yellow' bgalpha='30%'>\1</span>", block.get_text(),flags=re.IGNORECASE)
|
||||
block.set_markup(highlighted_text)
|
||||
else:
|
||||
block.set_markup(block.get_text())
|
||||
if message and message.text:
|
||||
message.set_visible(re.search(search_term, message.text, re.IGNORECASE))
|
||||
for block in message.content_children:
|
||||
if isinstance(block, message_widget.text_block):
|
||||
if search_term:
|
||||
highlighted_text = re.sub(f"({re.escape(search_term)})", r"<span background='yellow' bgalpha='30%'>\1</span>", block.get_text(),flags=re.IGNORECASE)
|
||||
block.set_markup(highlighted_text)
|
||||
else:
|
||||
block.set_markup(block.get_text())
|
||||
|
||||
@Gtk.Template.Callback()
|
||||
def on_clipboard_paste(self, textview):
|
||||
@@ -367,6 +371,10 @@ class AlpacaWindow(Adw.ApplicationWindow):
|
||||
clipboard.read_text_async(None, self.cb_text_received)
|
||||
clipboard.read_texture_async(None, self.cb_image_received)
|
||||
|
||||
def run_terminal(self, script:list):
|
||||
self.terminal_scroller.set_child(terminal_widget.terminal(script))
|
||||
self.terminal_dialog.present(self)
|
||||
|
||||
def convert_model_name(self, name:str, mode:int) -> str: # mode=0 name:tag -> Name (tag) | mode=1 Name (tag) -> name:tag
|
||||
try:
|
||||
if mode == 0:
|
||||
@@ -813,9 +821,20 @@ Generate a title following these rules:
|
||||
self.banner.set_revealed(monitor.get_power_saver_enabled() and self.powersaver_warning_switch.get_active())
|
||||
|
||||
def prepare_alpaca(self, local_port:int, remote_url:str, remote:bool, tweaks:dict, overrides:dict, bearer_token:str, idle_timer_delay:int, save:bool):
|
||||
#Model Manager
|
||||
self.model_manager = model_widget.model_manager_container()
|
||||
self.model_scroller.set_child(self.model_manager)
|
||||
|
||||
#Chat History
|
||||
self.load_history()
|
||||
|
||||
#Instance
|
||||
self.ollama_instance = connection_handler.instance(local_port, remote_url, remote, tweaks, overrides, bearer_token, idle_timer_delay)
|
||||
|
||||
#Model Manager P.2
|
||||
self.model_manager.update_available_list()
|
||||
self.model_manager.update_local_list()
|
||||
|
||||
#User Preferences
|
||||
for element in list(list(list(list(self.tweaks_group)[0])[1])[0]):
|
||||
if element.get_name() in self.ollama_instance.tweaks:
|
||||
@@ -832,23 +851,13 @@ Generate a title following these rules:
|
||||
self.remote_connection_switch.set_active(self.ollama_instance.remote)
|
||||
self.instance_idle_timer.set_value(self.ollama_instance.idle_timer_delay)
|
||||
|
||||
#Model Manager
|
||||
self.model_manager = model_widget.model_manager_container()
|
||||
self.model_scroller.set_child(self.model_manager)
|
||||
|
||||
#Chat History
|
||||
self.load_history()
|
||||
|
||||
#Model Manager P.2
|
||||
self.model_manager.update_available_list()
|
||||
self.model_manager.update_local_list()
|
||||
self.get_application().lookup_action("manage_models").set_enabled(True)
|
||||
|
||||
#Save preferences
|
||||
if save:
|
||||
self.save_server_config()
|
||||
|
||||
self.send_button.set_sensitive(True)
|
||||
self.attachment_button.set_sensitive(True)
|
||||
self.get_application().lookup_action('manage_models').set_enabled(True)
|
||||
self.get_application().lookup_action('preferences').set_enabled(True)
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
@@ -895,7 +904,9 @@ Generate a title following these rules:
|
||||
|
||||
for action_name, data in universal_actions.items():
|
||||
self.get_application().create_action(action_name, data[0], data[1] if len(data) > 1 else None)
|
||||
self.get_application().lookup_action("manage_models").set_enabled(False)
|
||||
|
||||
self.get_application().lookup_action('manage_models').set_enabled(False)
|
||||
self.get_application().lookup_action('preferences').set_enabled(False)
|
||||
|
||||
self.file_preview_remove_button.connect('clicked', lambda button : dialogs.remove_attached_file(self, button.get_name()))
|
||||
self.attachment_button.connect("clicked", lambda button, file_filter=self.file_filter_attachments: dialogs.attach_file(self, file_filter))
|
||||
|
||||
@@ -14,6 +14,7 @@
|
||||
<object class="AdwBreakpoint">
|
||||
<condition>max-width: 690sp</condition>
|
||||
<setter object="split_view_overlay" property="collapsed">true</setter>
|
||||
<setter object="terminal_dialog" property="width-request">400</setter>
|
||||
</object>
|
||||
</child>
|
||||
<property name="content">
|
||||
@@ -180,6 +181,7 @@
|
||||
<object class="GtkButton" id="attachment_button">
|
||||
<property name="vexpand">false</property>
|
||||
<property name="valign">3</property>
|
||||
<property name="sensitive">false</property>
|
||||
<property name="tooltip-text" translatable="yes">Attach File</property>
|
||||
<style>
|
||||
<class name="circular"/>
|
||||
@@ -474,6 +476,29 @@
|
||||
</child>
|
||||
</object>
|
||||
|
||||
<object class="AdwDialog" id="terminal_dialog">
|
||||
<accessibility>
|
||||
<property name="label" translatable="yes">Manage models dialog</property>
|
||||
</accessibility>
|
||||
<property name="title" translatable="yes">Terminal</property>
|
||||
<property name="can-close">true</property>
|
||||
<property name="width-request">600</property>
|
||||
<property name="height-request">600</property>
|
||||
<child>
|
||||
<object class="AdwToolbarView">
|
||||
<style>
|
||||
<class name="osd"/>
|
||||
</style>
|
||||
<child type="top">
|
||||
<object class="AdwHeaderBar"/>
|
||||
</child>
|
||||
<property name="content">
|
||||
<object class="GtkScrolledWindow" id="terminal_scroller"/>
|
||||
</property>
|
||||
</object>
|
||||
</child>
|
||||
</object>
|
||||
|
||||
<object class="AdwDialog" id="manage_models_dialog">
|
||||
<accessibility>
|
||||
<property name="label" translatable="yes">Manage models dialog</property>
|
||||
|
||||
Reference in New Issue
Block a user